药学学报, 2019, 54(11): 2113-2117
引用本文:
齐连权, 白玉, 罗建辉. 单克隆抗体药物序列分析的审评思考[J]. 药学学报, 2019, 54(11): 2113-2117.
QI Lian-quan, BAI Yu, LUO Jian-hui. Sequence analysis of therapeutic monoclonal antibody[J]. Acta Pharmaceutica Sinica, 2019, 54(11): 2113-2117.

单克隆抗体药物序列分析的审评思考
齐连权, 白玉, 罗建辉
国家药品监督管理局药品审评中心, 北京 100022
摘要:
改造用于重组表达生物技术药物宿主的遗传信息,包括将外源基因转入宿主细胞之后,对其DNA、mRNA和蛋白水平上的序列加以分析是产品/工艺开发和质量研究的重要部分。本文以单克隆抗体药物为例,介绍了近年来新一代测序和液质联用等新技术在序列分析方面的应用。这些技术在成本、耗时和专业能力要求方面各不相同,应按照逐步递进的原则,在药物生命周期的不同阶段合理选择使用,以提高研发的成功率并保证产品质量,进而保证临床使用的疗效和安全性。
关键词:    序列分析      单克隆抗体      质谱      新一代测序     
Sequence analysis of therapeutic monoclonal antibody
QI Lian-quan, BAI Yu, LUO Jian-hui
Center for Drug Evaluation, National Medical Products Administration, Beijing 100022, China
Abstract:
Sequence analysis of DNA, mRNA and protein is an essential component of biologics or bioprocess development. Analysis of sequences at the DNA, mRNA, and protein levels after the transfer of the gene of interest into a host cell is an important part of quality control. This article reviews the application of new technologies such as next-generation sequencing and LC-MS/MS in biological drug development such as monoclonal antibodies. These techniques have different requirements in term of cost, handling time and expertise. Selecting an appropriate technique with a sound rationale at different stages of drug development will add to the success rate of research and development, and ensure product quality, thus ensuring the clinical efficacy and safety.
Key words:    sequence analysis    monoclonal antibody    mass spectrometry    next generation sequencing   
收稿日期: 2019-04-08
DOI: 10.16438/j.0513-4870.2019-0255
相关功能
PDF(315KB) Free
打印本文
0
作者相关文章
齐连权  在本刊中的所有文章
白玉  在本刊中的所有文章
罗建辉  在本刊中的所有文章

参考文献:
[1] Qian Y, Chen Z, Huang X, et al. Early identification of unusually clustered mutations and root causes in therapeutic antibody development[J]. Biotechnol Bioeng, 2018, 115: 2377-2382.
[2] No authors listed. Supplement to the points to consider in the production and testing of new drugs and biologicals produced by recombinant DNA technology: nucleic acid characterization and genetic stability[J]. Biologicals, 1993, 21: 81-83.
[3] WHO. WHO expert committee on biological standardization,guidelines on evaluation of similar biotherapeutic products (SBPs), ECBS[EB/OL]. 2009[2019-5-10]. https://www.who.int/biologicals/areas/biological_therapeutics/BIOTHERAPEUTICS_FOR_WEB_22APRIL2010.pdf.
[4] ICH Q5B. Quality of biotechnological products: analysis of the expression construct in cell lines used for production of rDNA derived protein products[EB/OL]. 1996[2019-5-10]. https://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q5B/Step4/Q5B_Guideline.pdf.
[5] Peng Z, Cheng Y, Tan BC, et al. Comprehensive analysis of RNA-Seq data reveals extensive RNA editing in a human transcriptome[J]. Nat Biotechnol, 2012, 30: 253-260.
[6] Wong HE,Huang CJ, Zhang Z. Amino acid misincorporation in recombinant proteins[J]. Biotechnol Adv, 2018, 36: 168-181.
[7] Lin TJ, Beal KM, Brown PW, et al. Evolution of a comprehensive, orthogonal approach to sequence variant analysis for biotherapeutics[J]. MAbs, 2018, 11: 1-12.
[8] Svec D, Tichopad A, Novosadova V, et al. How good is a PCR efficiency estimate: recommendations for precise and robust qPCR efficiency assessments[J]. Biomol Detect Quantif, 2015, 3: 9-16.
[9] Azizi A, Aidoo F, Gisonni-Lex L, et al. Determination of HSV-1 UL5 and UL29 gene copy numbers in an HSV complementing Vero cell line[J]. J Biotechnol, 2013, 168: 382-387.
[10] Betts Z, Dickson AJ. Improved CHO cell line stability and recombinant protein expression during long-term culture[J]. Methods Mol Biol, 2017, 1603: 119-141.
[11] Goodwin S, McPherson JD, McCombie WR. Coming of age: ten years of next-generation sequencing technologies[J]. Nat Rev Genet, 2016, 17: 333-351.
[12] Tsiatis AC, Norris-Kirby A, Rich RG, et al. Comparison of Sanger sequencing, pyrosequencing, and melting curve analysis for the detection of KRAS mutations: diagnostic and clinical implications[J]. J Mol Diagn, 2010, 12: 425-432.
[13] Cartwright JF, Anderson K, Longworth J, et al. Highly sensitive detection of mutations in CHO cell recombinant DNA using multi-parallel single molecule real-time DNA sequencing[J]. Biotechnol Bioeng, 2018, 115: 1485-1498.
[14] Treangen TJ, Salzberg SL. Repetitive DNA and next-generation sequencing: computational challenges and solutions[J]. Nat Rev Genet, 2011, 13: 36-46.
[15] Ng SH, Azizi A, Edamura K, et al. Preliminary evaluation of next-generation sequencing performance relative to qPCR and in vitro cell culture tests for human cytomegalovirus[J]. PDA J Pharm Sci Technol, 2014, 68: 563-571.
[16] Aeschlimann SH, Graf C, Dmytro M, et al. Enhanced CHO clone screening: applying targeted locus amplification and next-generation sequencing technologies during cell line development[J]. Biotechnol J, 2019.DOI:10.1002/biot.201800371.
[17] Wright C, Groot J, Swahn S, et al. Genetic mutation analysis at early stages of cell line development using next generation sequencing[J]. Biotechnol Prog, 2016, 32: 813-817.
[18] Zhang S, Hughes JD, Murgolo N, et al. Mutation detection in an antibody-producing Chinese hamster ovary cell line by targeted RNA sequencing[J]. Biomed Res Int, 2016, 2016: 8356435.
[19] Tzani I, Monger C, Kelly P, et al. Understanding biopharmaceutical production at single nucleotide resolution using ribosome footprint profiling[J]. Curr Opin Biotechnol, 2018, 53: 182-190.
[20] Li H, Chen K, Wang Z et al. Genetic analysis of the clonal stability of Chinese hamster ovary cells for recombinant protein production[J]. Mol Biosyst, 2016, 12: 102-109.
[21] Wong HE, Huang CJ, Zhang Z. Amino acid misincorporation propensities revealed through systematic amino acid starvation[J]. Biochemistry, 2018, 57: 6767-6779.
[22] Rathore D, Faustino A, Schiel J, et al. The role of mass spectrometry in the characterization of biologic protein products[J]. Expert Rev Proteomics, 2018, 15: 431-449.
[23] Rogers RS, Nightlinger NS, Livingston B, et al. Development of a quantitative mass spectrometry multi-attribute method for characterization, quality control testing and disposition of biologics[J]. mAbs, 2015, 7: 881-890.
[24] Zhao Y, Sun L, Knierman MD, et al. Fast separation and analysis of reduced monoclonal antibodies with capillary zone electrophoresis coupled to mass spectrometry[J]. Talanta, 2016, 148: 529-533.
[25] Griaud F, Winter A, Denefeld B, et al. Identification of multiple serine to asparagine sequence variation sites in an intended copy product of LUCENTIS® by mass spectrometry[J]. MAbs, 2017, 9: 1337-1348.
[26] Wen D, Vecchi MM, Gu S, et al. Discovery and investigation of misincorporation of serine at asparagine positions in recombinant proteins expressed in Chinese hamster ovary cells[J]. J Biol Chem, 2009, 284: 32686-32694.
[27] Fornelli L, Ayoub D, Aizikov K, et al. Middle-down analysis of monoclonal antibodies with electron transfer dissociation orbitrap Fourier transform mass spectrometry[J]. Anal Chem, 2014, 86: 3005-3012.
[28] Rogers RS, Abernathy M, Richardson DD, et al. A view on the importance of “multi-attribute method” for measuring purity of biopharmaceuticals and improving overall control strategy[J]. AAPS J, 2018, 20: 7.
[29] Brady LJ, Scott RA, Balland A. An optimized approach to the rapid assessment and detection of sequence variants in recombinant protein products[J]. Anal Bioanal Chem, 2015, 407: 3851-3860.
相关文献:
1.陶磊 饶春明 高凯 史新昌 赵阳 王军志.重组嵌合抗CD20 IgG1型单克隆抗体的结构验证[J]. 药学学报, 2010,45(6): 752-755