药学学报, 2019, 54(12): 2256-2266
引用本文:
张舒慧, 杜金城, 李海云, 林玉坤, 杜钢军. 芪蛭降糖片对链脲佐菌素诱导大鼠糖尿病足溃疡的保护作用[J]. 药学学报, 2019, 54(12): 2256-2266.
ZHANG Shu-hui, DU Jin-cheng, LI Hai-yun, LIN Yu-kun, DU Gang-jun. The protective effect of Qizhi hypoglycemic tablet on foot ulcer in streptozotocin-induced diabetes in rats[J]. Acta Pharmaceutica Sinica, 2019, 54(12): 2256-2266.

芪蛭降糖片对链脲佐菌素诱导大鼠糖尿病足溃疡的保护作用
张舒慧1, 杜金城2, 李海云1, 林玉坤1, 杜钢军1
1. 河南大学药学院药物研究所, 河南 开封 475004;
2. 湖南中医药大学中医学院, 湖南 长沙 410208
摘要:
观察芪蛭降糖片对糖尿病大鼠足溃疡的保护作用,探索其可能的作用机制。用链脲佐菌素诱导大鼠糖尿病模型,模型建立后采用人体等效日剂量的芪蛭降糖片、盐酸二甲双胍片和格列本脲片每日1次独立治疗3个月,治疗2个月后足面皮肤切除造足溃疡模型,观察糖尿病大鼠足溃疡愈合的动态变化,检测指标包括血糖、血清血管内皮生长因子(VEGF)、诱导型一氧化氮合酶(iNOS)、血浆中凝血因子Ⅲ(FⅢ)、凝血4项(凝血酶时间TT、活化部分凝血酶原时间APTT、凝血酶原时间PT、纤维蛋白原FIB)和创面愈合情况,网络药理学分析芪蛭降糖片保护糖尿病及其足溃疡的机制,免疫组化检测胰腺组织转化生长因子-β (TGF-β)和核因子κB(NF-κB)蛋白表达验证部分网络药理学预测的损伤保护机制。所有动物实验均经河南大学实验动物伦理委员会批准(许可证号为HUSAM 2016-288)。结果显示,模型大鼠一直保持高血糖状态,多饮多食多尿现象明显,体重进行性降低,血清VEGF和iNOS增高,血凝度增加,表现为FⅢ增加,TT、APTT、PT延长,FIB降低,足创面愈合缓慢。盐酸二甲双胍片和格列本脲片虽对高血糖、多饮多食多尿和消瘦有改善作用,但对高凝状态和创面愈合改善作用不明显。芪蛭降糖片降糖作用不及盐酸二甲双胍片和格列本脲片起效快,但改善多饮多食多尿和消瘦与二者相似,且明显改善高凝状态和创面愈合,降低血清VEGF和iNOS。网络药理学分析表明,芪蛭降糖片通过胰岛素抵抗通路降低高血糖,通过HIF-1通路改善血凝状态,通过VEGF通路、MAPK通路和NF-κB通路影响组织损伤过程阻止糖尿病足溃疡,免疫组化显示芪蛭降糖片能够抑制糖尿病大鼠胰腺组织TGF-β和NF-κB高表达,从而维护胰岛功能。本研究表明,芪蛭降糖片有保护胰岛损伤辅助治疗糖尿病和改善糖尿病大鼠足溃疡愈合作用,是应用前景较好的糖尿病足防治药物。
关键词:    芪蛭降糖片      链脲佐菌素      糖尿病足      网络药理学     
The protective effect of Qizhi hypoglycemic tablet on foot ulcer in streptozotocin-induced diabetes in rats
ZHANG Shu-hui1, DU Jin-cheng2, LI Hai-yun1, LIN Yu-kun1, DU Gang-jun1
1. Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng 475004, China;
2. College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, China
Abstract:
This study aimed to determine the protective effect of Qizhi hypoglycemic tablet (QZHGT) on foot ulcer in diabetic rats and explore its possible mechanism. Diabetes was induced by streptozotocin injection in rats. The rats received QZHGT (780 mg·kg-1), metformin hydrochloride tablet (Metf, 200 mg·kg-1) or glibenclamide tablet (Glib, 1.5 mg·kg-1) alone via intragastric administration once a day for three months. Food ulcer was prepared by foot skin excision after drug therapy lasted for two months, and the dynamic changes in food ulcer healing were determined. During the experiment, blood glucose, serum levels of vascular endothelial growth factor (VEGF) and inducible nitric oxide synthase (iNOS), factor Ⅲ (FⅢ) and four coagulation parameters[thrombin time (TT), activated partial thromboplatin time (APTT), prothrombin time (PT), fibrinogen (FIB)] were detected. Finally, the protective mechanisms of QZHGT against diabetes and foot ulcer were analyzed by network pharmacology, and immunohistochemistry was used to confirm the expression of transforming growth factor-β (TGF-β) and nuclear factor κB (NF-κB) in pancreatic tissue. All animal procedures were approved by the Animal Experimentation Ethics Committee of Henan University (permission number HUSAM 2016-288). The results showed that the lasting hyperglycemia, polydipsia, polyphagia, polyuria and body weight lost took place in model rats compared to those in normal rats. These model rats also showed an increase in serum VEGF and iNOS, FⅢ, TT, APTT and PT, and a reduction in FIB and wound healing. Metf or Glib significantly improved hyperglycemia, polydipsia, polyphagia, polyuria and emaciation, but failed to ameliorate hypercoagulation and wound healing. QZHGT showed a similar effect on polydipsia, polyphagia, polyuria and emaciation to Metf or Glib, although it was inferior to them in hypoglycemic action. Importantly, QZHGT significantly improved hypercoagulation and wound healing, and attenuated serum VEGF and iNOS. Network pharmacology revealed that QZHGT decreased hyperglycemia through "insulin resistance pathway", improved coagulation status through "HIF-1 signaling pathway", prevented diabetic foot ulcers through "VEGF signaling pathway", "MAPK signaling pathway" and "NF-κB signaling pathway". Immunohistochemistry showed that QZHGT could inhibit the expression of TGF-β and NF-κB in pancreatic tissue to maintain islet function in diabetic rats. In summary, these data suggest that QZHGT can prevent pancreatic injury for adjunctive hypoglycemia and diabetic foot ulcer treatment, and is a better preventive and therapeutic drug for diabetic foot ulcer.
Key words:    Qizhi hypoglycemic tablet    streptozotocin    diabetic foot    network pharmacology   
收稿日期: 2019-04-19
DOI: 10.16438/j.0513-4870.2019-0305
基金项目: 河南省自然科学基金项目(182300410310).
通讯作者: 杜钢军,Tel:15037883506,E-mail:dgjlhh@163.com
Email: dgjlhh@163.com
相关功能
PDF(16881KB) Free
打印本文
0
作者相关文章
张舒慧  在本刊中的所有文章
杜金城  在本刊中的所有文章
李海云  在本刊中的所有文章
林玉坤  在本刊中的所有文章
杜钢军  在本刊中的所有文章

参考文献:
[1] Baltzis D, Meimeti E, Grammatikopoulou MG, et al. Assessment of telomerase activity in leukocytes of type 2 diabetes mellitus patients having or not foot ulcer:possible correlation with other clinical parameters[J]. Exp Ther Med, 2018, 15:3420-3424.
[2] Brennan MB, Hess TM, Bartle B, et al. Diabetic foot ulcer severity predicts mortality among veterans with type 2 diabetes[J]. J Diabetes Complicat, 2017, 31:556-561.
[3] Hu HH. Clinical examination of diabetes mellitus and its complications[J]. Chin Commun Doct (中国社区医师), 2018, 34:120-121.
[4] Gibbons CH, Freeman R. Treatment-induced neuropathy of diabetes:an acute, iatrogenic complication of diabetes[J]. Brain, 2014, 138:43-52.
[5] Yu X, Chau J, Huo L. The effectiveness of traditional Chinese medicine-based lifestyle interventions on biomedical, psychosocial, and behavioral outcomes in individuals with type 2 diabetes:a systematic review with meta-analysis[J]. Int J Nurs Stud, 2018, 80:165-180.
[6] Zhang WY, Ma J, Zhang W, et al. The prevention and treatment of the diabetic eye diseases with traditional Chinese medicine[J]. Transl Med J (转化医学杂志), 2018, 7:247-249.
[7] Cheng MH, Hsieh CL, Wang CY, et al. Complementary therapy of traditional Chinese medicine for blood sugar control in a patient with type 1 diabetes[J]. Complement Ther Med, 2017, 30:10-13.
[8] Guo ZA, Meng FC, Yu CG. Effect of Qizhi Jiangtang capsule on function and structure of kidney in diabetic nephropathy rats[J]. China Med Pharm (中国医药科学), 2015, 5:31-36.
[9] Geng S, Zheng Y, Meng M, et al. Gingerol reverses the cancer-promoting effect of capsaicin by increased TRPV1 level in a urethane-induced lung carcinogenic model[J]. J Agric Food Chem, 2016, 64:6203-6211.
[10] Ouyang LD, Hu XS, Niu M, et al. Mechanisms of Hirudo in promoting blood circulation and removing stasis based on network pharmacology[J]. China J Chin Mater Med (中国中药杂志), 2018, 43:1901-1906.
[11] Cheng L, Shen ZF, Sun GB, et al. Advances in diabetic animal models and its application in the traditional Chinese medicine research[J]. Acta Pharm Sin (药学学报), 2015, 50:951-958.
[12] Wang N, Yang BH, Wang G, et al. A meta-analysis of the relationship between foot local characteristics and major lower extremity amputation in diabetic foot patients[J]. J Cell Biochem, 2019, 120:9091-9096.
[13] Molines-Barroso RJ, Lazaro-Martinez JL, Beneit-Montesinos JV, et al. Predictors of diabetic foot reulceration beneath the hallux[J]. J Diabetes Res, 2019, 2019:9038171.
[14] Liu HJ. Clinical observation on external therapy of traditional Chinese medicine in treating diabetic foot ulcer for 146 cases[J]. Guangming J Chin Med (光明中医), 2018, 33:13-14.
[15] Iwase M, Fujii H, Nakamura U, et al. Incidence of diabetic foot ulcer in Japanese patients with type 2 diabetes mellitus:The Fukuoka diabetes registry[J]. Diabetes Res Clin Pract, 2018, 137:183-189.
[16] Lee PY, Kong PW, Pua YH. Reliability of peak foot pressure in patients with previous diabetic foot ulceration[J]. Gait Posture, 2019, 70:6-11.
[17] Shi HL, Feng XS, Ma XJ, et al. Network pharmacology-based study on intervention mechanism of Gu-Chang-Zhi-Xie pills in the treatment of irritable bowel syndrome[J]. Acta Pharm Sin (药学学报), 2019, 54:482-493.
[18] Gheibi S, Jeddi S, Carlstrom M, et al. Effects of long-term nitrate supplementation on carbohydrate metabolism, lipid profiles, oxidative stress, and inflammation in male obese type 2 diabetic rats[J]. Nitric Oxide, 2018, 75:27-41.
[19] Toselli CM, Wilkinson BM, Paterson J, et al. VEGFA/VEGFR2 signaling is necessary for zebrafish islet vessel development, but is dispensable for beta-cell and alpha-cell formation[J]. Sci Rep, 2019, 9:3594.
[20] Varsha MK, Thiagarajan R, Manikandan R, et al. Vitamin K1 alleviates streptozotocin-induced type 1 diabetes by mitigating free radical stress, as well as inhibiting NF-kappaB activation and iNOS expression in rat pancreas[J]. Nutrition, 2015, 31:214-222.
[21] Park CH, Park KH, Hong SG, et al. Oligonol, a low-molecular-weight polyphenol derived from lychee peel, attenuates diabetes-induced pancreatic damage by inhibiting inflammatory responses via oxidative stress-dependent mitogen-activated protein kinase/nuclear factor-kappa B signaling[J]. Phytother Res, 2018, 32:2541-2550.
[22] Tang PM, Zhang YY, Lan HY. LncRNAs in TGF-β-driven tissue fibrosis[J]. Noncoding RNA, 2018. DOI:10.3390/ncrna4040026.
[23] Ruszkowska-Ciastek B, Sokup A, Wernik T, et al. Low-grade risk of hypercoagulable state in patients suffering from diabetes mellitus type 2[J]. J Zhejiang Univ Sci B, 2015, 16:788-795.
[24] Evans CE, Bendahl PO, Belting M, et al. Diverse roles of cell-specific hypoxia-inducible factor 1 in cancer-associated hypercoagulation[J]. Blood, 2016, 127:1355-1360.
[25] Fan J, Lv H, Li J, et al. Roles of Nrf2/HO-1 and HIF-1α/VEGF in lung tissue injury and repair following cerebral ischemia/reperfusion injury[J]. J Cell Physiol, 2019, 234:7695-7707.
[26] Povysheva T, Shmarov M, Logunov D, et al. Post-spinal cord injury astrocyte-mediated functional recovery in rats after intraspinal injection of the recombinant adenoviral vectors Ad5-VEGF and Ad5-ANG[J]. J Neurosurg Spine, 2017, 27:105-115.
[27] Bao CX, Chen HX, Mou XJ, et al. GZMB gene silencing confers protection against synovial tissue hyperplasia and articular cartilage tissue injury in rheumatoid arthritis through the MAPK signaling pathway[J]. Biomed Pharmacother, 2018, 103:346-354.
[28] Gholami M, Khayat ZK, Anbari K, et al. Quercetin ameliorates peripheral nerve ischemia-reperfusion injury through the NF-κB pathway[J]. Anat Sci Int, 2017, 92:330-337.
[29] Zhu J, Liang Y, Yue S, et al. Combination of panaxadiol and panaxatriol type saponins and ophioponins from Shenmai Formula attenuates lipopolysaccharide-induced inflammatory injury in cardiac microvascular endothelial cells by blocking NF-κB pathway[J]. J Cardiovasc Pharmacol, 2017, 69:140-146.