药学学报, 2020, 55(1): 1-7
引用本文:
熊宇麒, 李学军. 心血管疾病与恶性肿瘤的共同危险因素及药物的影响[J]. 药学学报, 2020, 55(1): 1-7.
XIONG Yu-qi, LI Xue-jun. Common risk factors of cardiovascular diseases and malignant tumors and the effect of drugs[J]. Acta Pharmaceutica Sinica, 2020, 55(1): 1-7.

心血管疾病与恶性肿瘤的共同危险因素及药物的影响
熊宇麒, 李学军
北京大学医学部基础医学院, 北京 100191
摘要:
心血管系统疾病和恶性肿瘤是目前全球范围内的主要死因,心血管疾病和恶性肿瘤的病因学研究发现了一系列获得广泛认可的危险因素。医疗实践乃至医学理论通常只关注其中一类疾病,但是越来越多的调查显示恶性肿瘤通常会累及心血管系统,造成血栓栓塞、心力衰竭等,抗癌治疗可能诱发心血管疾病,而心血管系统疾病似乎会升高恶性肿瘤风险。这一现状要求研究者对这两大疾病进行深度融合的交叉研究。因此,本文从肿瘤心脏病学的视角综述了心血管疾病和恶性肿瘤共同的危险因素,两类疾病的病理生理学机制,肿瘤治疗造成的心脏毒性及心血管疾病治疗药物对癌症的影响,最后对预防和治疗的前景进行了展望。
关键词:    肿瘤心脏病学      心血管疾病      恶性肿瘤      心脏毒性      癌症发生     
Common risk factors of cardiovascular diseases and malignant tumors and the effect of drugs
XIONG Yu-qi, LI Xue-jun
School of Basic Medical Science, Health Science Center, Peking University, Beijing 100191, China
Abstract:
Cardiovascular diseases (CVDs) and malignant tumors are the main causes of death worldwide. The etiology study of CVDs and malignant tumors has found a series of widely recognized risk factors. Medical practice and medical theory usually focus on one of the diseases, but more and more evidence reveals that malignant tumors usually involve the cardiovascular system, thus leading to thromboembolism, heart failure, etc. Anti-cancer treatment proves to induce CVDs, while CVDs seem to increase the risk of malignant tumors. This situation requires researchers to conduct further combined crossover study on both CVDs and malignant tumors. In this review, we discuss the potential common risk factors of cardiovascular diseases and malignant tumors, the pathological and physical mechanism of the two kinds of diseases, the cardiac toxicity induced by tumor therapy and the impact of cardiovascular drugs on cancer from the perspective of cardio-oncology, and in the endput forward the prospect of prevention and treatment.
Key words:    cardio-oncology    cardiovascular disease    malignant neoplasm    cardiotoxicity    carcinogenesis   
收稿日期: 2019-09-16
DOI: 10.16438/j.0513-4870.2019-0756
基金项目: 国家自然科学基金资助项目(81874318,81673453,81473235).
通讯作者: 李学军,Tel:86-10-82802863,E-mail:xjli@bjmu.edu.cn
Email: xjli@bjmu.edu.cn
相关功能
PDF(1089KB) Free
打印本文
0
作者相关文章
熊宇麒  在本刊中的所有文章
李学军  在本刊中的所有文章

参考文献:
[1] Hu SS, Gao RL, Liu LS, et al. Summary of the 2018 report on cardiovascular diseases in China[J]. Chin Circ J (中国循环杂志), 2019, 34:209-220.
[2] Sun KX, Zheng RS, Zhang SW, et al. Report of cancer incidence and mortality in different areas of China, 2015[J]. China Cancer (中国肿瘤), 2019, 28:1-11.
[3] Tuzovic M, Yang EH, Sevag Packard RR, et al. National outcomes in hospitalized patients with cancer and comorbid heart failure[J]. J Card Fail, 2019, 25:516-521.
[4] Meijers WC, de Boer RA. Common risk factors for heart failure and cancer[J]. Cardiovasc Res, 2019, 115:844-853.
[5] Blaes A, Prizment A, Koene RJ, et al. Cardio-oncology related to heart failure:common risk factors between cancer and cardiovascular disease[J]. Heart Fail Clin, 2017, 13:367-380.
[6] Ho JE, Enserro D, Brouwers FP, et al. Predicting heart failure with preserved and reduced ejection fraction:the international collaboration on heart failure subtypes[J]. Circ Heart Fail, 2016, 9:e003116.
[7] Ameri P, Canepa M, Anker MS, et al. Cancer diagnosis in patients with heart failure:epidemiology, clinical implications and gaps in knowledge[J]. Eur J Heart Fail, 2018, 20:879-887.
[8] Bertero E, Ameri P, Maack C. Bidirectional relationship between cancer and heart failure:old and new issues in cardio-oncology[J]. Card Fail Rev, 2019, 5:106-111.
[9] Stocks T, Van Hemelrijck M, Manjer J, et al. Blood pressure and risk of cancer incidence and mortality in the metabolic syndrome and cancer project[J]. Hypertension, 2012, 59:802-810.
[10] Becker MA, Ibrahim YH, Oh AS, et al. Insulin receptor substrate adaptor proteins mediate prognostic gene expression profiles in breast cancer[J]. PLoS One, 2016, 11:e0150564.
[11] Werner H, Bruchim I. IGF-1 and BRCA1 signalling pathways in familial cancer[J]. Lancet Oncol, 2012, 13:e537-e544.
[12] Moon SH, Huang CH, Houlihan SL, et al. p53 represses the mevalonate pathway to mediate tumor suppression[J]. Cell, 2019, 176:564-580.
[13] Zamanian-Daryoush M, DiDonato JA. Apolipoprotein A-I and cancer[J]. Front Pharmacol, 2015, 6:265.
[14] Georgila K, Vyrla D, Drakos E. Apolipoprotein A-I (Apo A-I), immunity, inflammation and cancer[J]. Cancers (Basel), 2019, 11:1097.
[15] Hu CA, Klopfer EI, Ray PE. Human apolipoprotein L1(Apo L1) in cancer and chronic kidney disease[J]. FEBS Lett, 2012, 586:947-955.
[16] Su WP, Sun LN, Yang SL, et al. Apolipoprotein C1 promotes prostate cancer cell proliferation in vitro[J]. J Biochem Mol Toxicol, 2018, e22158.
[17] Ren H, Chen Z, Yang L, et al. Apolipoprotein C1(APO C1) promotes tumor progression via MAPK signaling pathways in colorectal cancer[J]. Cancer Manag Res, 2019, 11:4917-4930.
[18] Lai H, Zhao X, Qin Y, et al. FAK-ERK activation in cell/matrix adhesion induced by the loss of apolipoprotein E stimulates the malignant progression of ovarian cancer[J]. J Exp Clin Cancer Res, 2018, 37:32.
[19] Zheng P, Luo Q, Wang W, et al. Tumor-associated macrophages-derived exosomes promote the migration of gastric cancer cells by transfer of functional apolipoprotein E[J]. Cell Death Dis, 2018, 9:434.
[20] Kaya H, Kurt R, Beton O, et al. Cancer antigen 125 is associated with length of stay in patients with acute heart failure[J]. Tex Heart Inst J, 2017, 44:22-28.
[21] Li KHC, Gong M, Li G, et al. Cancer antigen-125 and outcomes in acute heart failure:a systematic review and meta-analysis[J]. Heart Asia, 2018, 10:e011044.
[22] Bianco CM, Al-Kindi SG, Oliveira GH. Advanced heart failure therapies for cancer therapeutics-related cardiac dysfunction[J]. Heart Fail Clin, 2017, 13:327-336.
[23] Banke A, Schou M, Videbaek L, et al. Incidence of cancer in patients with chronic heart failure:a long-term follow-up study[J]. Eur J Heart Fail, 2016, 18:260-266.
[24] Fernandez-Ruiz I. Heart failure:heart failure after MI might increase risk of cancer[J]. Nat Rev Cardiol, 2016, 13:506-507.
[25] Mamas MA, Sperrin M, Watson MC, et al. Do patients have worse outcomes in heart failure than in cancer? A primary care-based cohort study with 10-year follow-up in scotland[J]. Eur J Heart Fail, 2017, 19:1095-1104.
[26] Sakamoto M, Hasegawa T, Asakura M, et al. Does the pathophysiology of heart failure prime the incidence of cancer?[J]. Hypertens Res, 2017, 40:831-836.
[27] Bertero E, Canepa M, Maack C, et al. Linking heart failure to cancer[J]. Circulation, 2018, 138:735-742.
[28] Tapia-Vieyra JV, Delgado-Coello B, Mas-Oliva J. Atherosclerosis and cancer; a resemblance with far-reaching implications[J]. Arch Med Res, 2017, 48:12-26.
[29] Moro-Garcia MA, Echeverria A, Galan-Artimez MC, et al. Immunosenescence and inflammation characterize chronic heart failure patients with more advanced disease[J]. Int J Cardiol, 2014, 174:590-599.
[30] Regulska K, Regulski M, Karolak B, et al. Beyond the boundaries of cardiology:still untapped anticancer properties of the cardiovascular system-related drugs[J]. Pharmacol Res, 2019, 147:104326.
[31] Le CP, Nowell CJ, Kim-Fuchs C, et al. Chronic stress in mice remodels lymph vasculature to promote tumour cell dissemination[J]. Nat Commun, 2016, 7:10634.
[32] Karlstaedt A, Schiffer W, Taegtmeyer H. Actionable metabolic pathways in heart failure and cancer-lessons from cancer cell metabolism[J]. Front Cardiovasc Med, 2018, 5:71.
[33] Li L, Zhao Q, Kong W. Extracellular matrix remodeling and cardiac fibrosis[J]. Matrix Biol, 2018, 68-69:490-506.
[34] Rupaimoole R, Calin GA, Lopez-Berestein G, et al. miRNA deregulation in cancer cells and the tumor microenvironment[J]. Cancer Discov, 2016, 6:235-246.
[35] Zhou Z, Lu ZR. Molecular imaging of the tumor microenvironment[J]. Adv Drug Deliv Rev, 2017, 113:24-48.
[36] Patel A, Sant S. Hypoxic tumor microenvironment:opportunities to develop targeted therapies[J]. Biotechnol Adv, 2016, 34:803-812.
[37] Olson OC, Quail DF, Joyce JA. Obesity and the tumor microenvironment[J]. Science, 2017, 358:1130-1131.
[38] Taha Isra N, Naba A. Exploring the extracellular matrix in health and disease using proteomics[J]. Essays Biochem, 2019, 63:417-432.
[39] Kim YA, Cho H, Lee N, et al. Doxorubicin-induced heart failure in cancer patients:a cohort study based on the korean national health insurance database[J]. Cancer Med, 2018, 7:6084-6092.
[40] Bloom MW, Hamo CE, Cardinale D, et al. Cancer therapy-related cardiac dysfunction and heart failure:part 1:definitions, pathophysiology, risk factors, and imaging[J]. Circ Heart Fail, 2016, 9:e002661.
[41] Cappetta D, De Angelis A, Sapio L, et al. Oxidative stress and cellular response to doxorubicin:a common factor in the complex milieu of anthracycline cardiotoxicity[J]. Oxid Med Cell Longev, 2017, 2017:1521020.
[42] Cuomo A, Rodolico A, Galdieri A, et al. Heart failure and cancer:mechanisms of old and new cardiotoxic drugs in cancer patients[J]. Card Fail Rev, 2019, 5:112-118.
[43] Hassen LJ, Lenihan DJ, Baliga RR. Hypertension in the cardio-oncology clinic[J]. Heart Fail Clin, 2019, 15:487-495.
[44] Goldhar HA, Yan AT, Ko DT, et al. The temporal risk of heart failure associated with adjuvant trastuzumab in breast cancer patients:a population study[J]. J Natl Cancer Inst, 2016, 108.
[45] Chen J, Long JB, Hurria A, et al. Incidence of heart failure or cardiomyopathy after adjuvant trastuzumab therapy for breast cancer[J]. J Am Coll Cardiol, 2012, 60:2504-2512.
[46] Menna P, Minotti G, Salvatorelli E. Cardiotoxicity of targeted cancer drugs:concerns, "the cart before the horse," and lessons from trastuzumab[J]. Curr Cardiol Rep, 2019. DOI:10.1007/s11886-019-1121-0.
[47] Watanabe H, Ichihara E, Kano H, et al. Congestive heart failure during osimertinib treatment for epidermal growth factor receptor (EGFR)-mutant non-small cell lung cancer (NSCLC)[J]. Intern Med, 2017, 56:2195-2197.
[48] Rowshanravan B, Halliday N, Sansom DM. CTLA-4:a moving target in immunotherapy[J]. Blood, 2018, 131:58-67.
[49] Xu-Monette ZY, Zhou J, Young KH. PD-1 expression and clinical PD-1 blockade in B-cell lymphomas[J]. Blood, 2018, 131:68-83.
[50] Delgobo M, Frantz S. Heart failure in cancer:role of checkpoint inhibitors[J]. J Thorac Dis, 2018, 10:S4323-S4334.
[51] Mahmood SS, Fradley MG, Cohen JV, et al. Myocarditis in patients treated with immune checkpoint inhibitors[J]. J Am Coll Cardiol, 2018, 71:1755-1764.
[52] Schneider C, Wallner M, Kolesnik E, et al. The anti-cancer multikinase inhibitor sorafenib impairs cardiac contractility by reducing phospholamban phosphorylation and sarcoplasmic calcium transients[J]. Sci Rep, 2018, 8:5295.
[53] Truitt R, Mu A, Corbin EA, et al. Increased afterload augments sunitinib-induced cardiotoxicity in an engineered cardiac microtissue model[J]. JACC Basic Transl Sci, 2018, 3:265-276.
[54] Mukai M, Oka T. Mechanism and management of cancer-associated thrombosis[J]. J Cardiol, 2018, 72:89-93.
[55] Elliott WJ. Antihypertensive drugs and risk of cancer:network meta-analyses and trial sequential analyses of 324 168 participants from randomised trials[J]. Yearbook Cardiol, 2012, 2012:22-24.
[56] Kokolus KM, Zhang Y, Sivik JM, et al. Beta blocker use correlates with better overall survival in metastatic melanoma patients and improves the efficacy of immunotherapies in mice[J]. Oncoimmunology, 2018, 7:e1405205.
[57] Hicks BM, Filion KB, Yin H, et al. Angiotensin converting enzyme inhibitors and risk of lung cancer:population based cohort study[J]. BMJ, 2018, 363:k4209.
[58] Thorat MACJ. A role for aspirin in cancer prevention?[J]. Cancer Discov, 2013, 3:1324.
[59] Sutcliffe P, Connock M, Gurung T, et al. Aspirin for prophylactic use in the primary prevention of cardiovascular disease and cancer:a systematic review and overview of reviews[J]. Health Technol Assess, 2013, 17:1-253.
[60] Mullen PJ, Yu R, Longo J, et al. The interplay between cell signalling and the mevalonate pathway in cancer[J]. Nat Rev Cancer, 2016, 16:718-731.