药学学报, 2020, 55(1): 8-14
引用本文:
郑文鸽, 秦雪梅, 高丽, 杜冠华. 衰老相关分泌表型的作用机制及相关药物研究进展[J]. 药学学报, 2020, 55(1): 8-14.
ZHENG Wen-ge, QIN Xue-mei, GAO Li, DU Guan-hua. Research advances in understanding the senescence-associated secretory phenotype and relevant drugs[J]. Acta Pharmaceutica Sinica, 2020, 55(1): 8-14.

衰老相关分泌表型的作用机制及相关药物研究进展
郑文鸽1,2, 秦雪梅1, 高丽1, 杜冠华3
1. 山西大学中医药现代研究中心, 山西 太原 030006;
2. 山西大学化学化工学院, 山西 太原 030006;
3. 中国医学科学院、北京协和医学院药物研究所, 北京 100050
摘要:
衰老相关分泌表型(senescence-associated secretory phenotype,SASP)是促炎因子、趋化因子和蛋白酶等一系列细胞因子的总称,是衰老细胞的关键特征。SASP是一柄双刃剑,在正常细胞中能抵御外界有害环境,但随着身体机能下降,SASP大量分泌,在诱发机体炎症的同时,加速机体衰老,导致多种衰老相关疾病的产生。本文概述了SASP的组成及其生理功能、SASP在衰老过程中的变化、调节途径以及调节SASP的抗衰老药物,旨在对SASP有一个更加全面深刻的认识,为基于SASP的抗衰老机制研究及相关药物新靶点的发现奠定基础。
关键词:    衰老相关分泌表型      衰老细胞      通路      药物     
Research advances in understanding the senescence-associated secretory phenotype and relevant drugs
ZHENG Wen-ge1,2, QIN Xue-mei1, GAO Li1, DU Guan-hua3
1. Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China;
2. College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China;
3. Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
Abstract:
The senescence-associated secretory phenotype (SASP) is a generic term for the secretion of a series of cytokines such as pro-inflammatory factors, chemokines and proteases, and is a key feature of senescent cells. SASP is a double-edged sword that can resist a harmful environment in normal cells, but with the decline of body function, the massive secretion of cytokines, chemokines and proteases accelerates aging while inducing inflammation, leading to the development of various aging-related diseases. This article reviews the composition and physiological functions of SASP, the changes in SASP during aging, the regulatory pathways associated with SASP, and the anti-aging drugs that regulate SASP. This article aims to present a more comprehensive understanding of SASP and lay the foundation for SASP-based anti-aging research and the discovery of new targets for anti-SASP drugs.
Key words:    senescence-associated secretory phenotype    senescent cell    pathway    drug   
收稿日期: 2019-07-25
DOI: 10.16438/j.0513-4870.2019-0603
基金项目: 国家自然科学青年基金资助项目(81603319);山西省面上青年基金资助项目(201801D221374).
通讯作者: 高丽,Tel:86-351-7018379,E-mail:gaoli87@sxu.edu.cn;杜冠华,Tel:86-10-63165184,E-mail:dugh@imm.ac.cn
Email: gaoli87@sxu.edu.cn;dugh@imm.ac.cn
相关功能
PDF(807KB) Free
打印本文
0
作者相关文章
郑文鸽  在本刊中的所有文章
秦雪梅  在本刊中的所有文章
高丽  在本刊中的所有文章
杜冠华  在本刊中的所有文章

参考文献:
[1] Young AR, Narita M. SASP reflects senescence[J]. EMBO Rep, 2009, 10:228-230.
[2] Coppe JP, Patil CK, Rodier F, et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor[J]. PLoS Biol, 2008, 6:2853-2868.
[3] Jurk D, Wilson C,Passos,JF, et al. Chronic inflammation induces telomere dysfunction and accelerates ageing in mice[J]. Nat Commun, 2014, 2:4172-4186.
[4] Byun HO, Lee YK, Kim JM, et al. From cell senescence to age-related diseases:differential mechanisms of action of senescence-associated secretory phenotypes[J]. BMB Rep, 2015, 48:549-558.
[5] Kadota T, Fujita Y, Yoshioka Y, et al. Emerging role of extracellular vesicles as a senescence-associated secretory phenotype:insights into the pathophysiology of lung diseases[J]. Mol Aspects Med, 2017, 60:92-103.
[6] Terlecki-Zaniewicz L, Lämmermann I, Latreille J, et al. Small extracellular vesicles and their miRNA cargo are anti-apoptotic members of the senescence-associated secretory phenotype[J]. Aging, 2018, 10:1103-1132.
[7] Soto-Gamez A, Demaria M. Therapeutic interventions for aging:the case of cellular senescence[J]. Drug Discov Today, 2017, 22:786-795.
[8] Rea IM, Gibson DS, McGilligan V, et al. Age and age-related diseases:role of inflammation triggers and cytokines[J]. Front Immunol, 2018, 9:586-614.
[9] Hou J, Kim S. Possible role of ginsenoside Rb1 in skin wound healing via regulating senescent skin dermal fibroblast[J]. Biochem Biophys Res Commun, 2018, 499:381-388.
[10] Loaiza N, Demaria M. Cellular senescence and tumor promotion:is aging the key?[J]. Biochim Biophys Acta, 2016, 1865:155-167.
[11] He S, Sharpless NE. Senescence in health and disease[J]. Cell, 2017, 169:1000-1011.
[12] Campisi J. Cellular senescence:putting the paradoxes in perspective[J]. Curr Opin Genet Dev, 2011, 21:107-112.
[13] Ritschka B, Storer M, Mas A. The senescence-associated secretory phenotype induces cellular plasticity and tissue regeneration[J]. Genes Dev, 2017, 31:172-183.
[14] Watanabe S, Kawamoto S, Ohtani N, et al. Impact of senescence-associated secretory phenotype and its potential as a therapeutic target for senescence-associated diseases[J]. Cancer Sci, 2017, 108:563-569.
[15] Borodkina AV,Deryabin PI, Giukova AA, et al. "Social life" of senescent cells:what is SASP and why study it?[J]. Acta Nat, 2018, 10:4-14.
[16] Yamamoto K, Kushida M, Tsuduki T. The effect of dietary lipid on gut microbiota in a senescence-accelerated prone mouse model (SAMP8)[J]. Biogerontology, 2018, 19:367-383.
[17] Dehghani A, Hafizibarjin Z, Najjari R, et al. Resveratrol and 1,25-dihydroxyvitamin D co-administration protects the heart against D-galactose-induced aging in rats:evaluation of serum and cardiac levels of klotho[J]. Aging Clin Exp Res, 2019, 31:1195-1205.
[18] Gao AW, Uit de Bos J, Sterken MG, et al. Forward and reverse genetics approaches to uncover metabolic aging pathways in Caenorhabditis elegans[J]. Biochim Biophys Acta Mol Basis Dis, 2017, 1864:2697-2706.
[19] Chinta SJ, Woods G, Demaria M, et al. Cellular senescence is induced by the environmental neurotoxin paraquat and contributes to neuropathology linked to Parkinson's disease cell reports[J]. Cell Rep, 2018, 22:930-940.
[20] Menon R, Behnia F, Polettini J, et al. Placental membrane aging and HMGB1 signaling associated with human parturition[J]. Aging, 2016, 8:216-230.
[21] Wiley CD, Schaum N, Alimirah F, et al. Small-molecule MDM2 antagonists attenuate the senescence-associated secretory phenotype[J]. Sci Rep, 2018, 8:2410-2419.
[22] Chinta SJ, Woods G, Rane A, et al. Cellular senescence and the aging brain[J]. Exp Gerontol, 2015, 68:3-7.
[23] Ito Y, Hoare M, Narita M. Spatial and temporal control of senescence[J]. Trends Cell Biol, 2017, 27:820-832.
[24] de Keizer PL. The fountain of youth by targeting senescent cells?[J]. Trends Mol Med, 2017, 23:6-17.
[25] Shi Q, Shen LY, Dong B, et al. The identification of the ATR inhibitor VE-822 as a therapeutic strategy for enhancing cisplatin chemosensitivity in esophageal squamous cell carcinoma[J]. Cancer Lett, 2018, 432:56-68.
[26] Weber AM, Ryan AJ. ATM and ATR as therapeutic targets in cancer[J]. Pharmacol Ther, 2015, 149:124-138.
[27] Ghosh K, Capell BC. The senescence-associated secretory phenotype:critical effector in skin cancer and aging.[J]. J Invest Dermatol, 2016, 136:2133-2139.
[28] Hernandez-Segura A, Nehme J, Demaria M. Hallmarks of cellular senescence[J]. Trends Cell Biol, 2018, 28:436-453.
[29] Aslani S, Jafari N, Javan MR, et al. Epigenetic modifications and therapy in multiple sclerosis[J]. Neuromol Med, 2017, 19:11-23.
[30] Degirmenci U, Lei S. Role of lncRNAs in cellular aging[J]. Front Endocrinol, 2016, 7:151-161.
[31] Panda AC, Abdelmohsen K, Gorospe M. SASP regulation by noncoding RNA[J]. Mech Aging Dev, 2017, 168:37-43.
[32] Hisamatsu D, Naka-Kaneda H. Reversing multiple age-related pathologies by controlling the senescence-associated secretory phenotype of stem cells[J]. Neural Regen Res, 2016, 11:1746-1747.
[33] Hisamatsu D, Ohno-Oishi M, Nakamura S, et al. Growth differentiation factor 6 derived from mesenchymal stem/stromal cells reduces age-related functional deterioration in multiple tissues[J]. Aging, 2016, 8:1259-1275.
[34] Yu S, Wang X, Geng P, et al. Melatonin regulates PARP1 to control the senescence-associated secretory phenotype (SASP) in human fetal lung fibroblast cells[J]. J Pineal Res, 2017, 63:e12405.
[35] Ryu DR, Yu MR, Kong KH, et al. Sirt1-hypoxia-inducible factor-1α interaction is a key mediator of tubulointerstitial damage in the aged kidney[J]. Aging Cell, 2019, 18:e12904.
[36] Hekmatimoghaddam S, Dehghani-Firoozabadi A, Zare-Khormizi MR, et al. Sirt1 and Parp1 as epigenome safeguards and microRNAs as SASP-associated signals, in cellular senescence and aging[J]. Ageing Res Rev, 2017, 40:120-141.
[37] Hayakawa T, Iwai M, Aoki S, et al. SIRT1 suppresses the senescence-associated secretory phenotype through epigenetic gene regulation[J]. PLoS One, 2015, 10:e0116480.
[38] Perrigue PM, Silva ME, Warden CD, et al. The histone demethylase jumonji coordinates cellular senescence including secretion of neural stem cell-attracting cytokines[J]. Mol Cancer Res, 2015, 13:636-650.
[39] Kang KA, Hyun JW. Oxidative stress, Nrf2, and epigenetic modification contribute to anticancer drug resistance[J]. Toxicol Res, 2017, 33:1-5.
[40] Feng YL, Yin YX, Ding J, et al. Alpha-1-antitrypsin suppresses oxidative stress in preeclampsia by inhibiting the p38MAPK signaling pathway:an in vivo and in vitro study[J]. PLoS One, 2017, 12:e0173711.
[41] Freund A, Patil CK, Campisi J. p38MAPK is a novel DNA damage response-independent regulator of the senescence-associated secretory phenotype[J]. EMBO J, 2011, 30:1536-1548.
[42] Takahashi A, Loo TM, Okada R, et al. Downregulation of cytoplasmic DNases is implicated in cytoplasmic DNA accumulation and SASP in senescent cells[J]. Nat Commun, 2018, 9:1249-1261.
[43] Chen K, Liu J, Cao XT. cGAS-STING pathway in senescence-related inflammation[J]. Natl Sci Rev, 2018, 5:308-310.
[44] Yang H, Wang H, Ren J. cGAS is essential for cellular senescence[J]. Proc Natl Acad Sci U S A, 2017, 114:E4612-E4620.
[45] Cao X, Li M. A new pathway for senescence regulation[J]. Genom Proteom Bioinf, 2015, 13:333-335.
[46] Kang C, Xu Q, Martin TD, et al. The DNA damage response induces inflammation and senescence by inhibiting autophagy of GATA4[J]. Science, 2015, 349:aaa5612.
[47] Xu M, Tchkonia T, Kirkland JL. Perspective:targeting the JAK/STAT pathway to fight age-related dysfunction[J]. Pharmacol Res, 2016, 111:152-154.
[48] Bousoik E, Montazeri Aliabadi H. "Do we know Jack" about JAK? A closer look at JAK/STAT signaling pathway[J]. Front Oncol, 2018, 8:287-307.
[49] Kandhaya-Pillai R, Miro-Mur F, Alijotas-Reig J, et al. TNFα-senescence initiates a STAT-dependent positive feedback loop, leading to a sustained interferon signature, DNA damage, and cytokine secretion[J]. Aging, 2017, 9:2411-2435.
[50] Xu M, Tchkonia T, Ding H, et al. JAK inhibition alleviates the cellular senescence-associated secretory phenotype and frailty in old age[J]. Proc Natl Acad Sci U S A, 2015, 112:E6301-E6310.
[51] Laberge RM, Sun Y, Orjalo AV, et al. MTOR regulates the pro-tumorigenic senescence-associated secretory phenotype by promoting IL1A translation[J]. Nat Cell Biol, 2015, 17:1049-1061.
[52] Kabir TD, Leigh RJ, Tasena H, et al. A miR-335/COX-2/PTEN axis regulates the secretory phenotype of senescent cancer-associated fibroblasts[J]. Aging, 2016, 8:1608-1635.
[53] Gao C, Ning B, Sang C, et al. Rapamycin prevents the intervertebral disc degeneration via inhibiting differentiation and senescence of annulus fibrosus cells[J]. Aging, 2018, 10:131-143.
[54] Wang R, Yu Z, Sunchu B, et al. Rapamycin inhibits the secretory phenotype of senescent cells by a Nrf2-independent mechanism[J]. Aging Cell, 2017, 16:564-874.
[55] Menicacci B, Laurenzana A, Chillà A, et al. Chronic resveratrol treatment inhibits MRC5 fibroblast SASP-related protumoral effects on melanoma cells[J]. J Gerontol A Biol Sci Med Sci, 2017, 72:1187-1195.
[56] Cheng X, Yao X, Xu S, et al. Punicalagin induces senescent growth arrest in human papillary thyroid carcinoma BCPAP cells, via NF-κB signaling pathway[J]. Biomed Pharmacother, 2018, 103:490-498.
[57] Liu S, Zheng Z, Ji S, et al. Resveratrol reduces senescence-associated secretory phenotype by SIRT1/NF-κB pathway in gut of the annual fish Nothobranchius guentheri[J]. Fish Shellfish Immunol, 2018, 80:473-479.
[58] Hou J, Cui C, Kim S, et al. Ginsenoside F1 suppresses astrocytic senescence-associated secretory phenotype[J]. Chem Biol Interact, 2018, 283:75-83.
[59] Park J, Lee SY, Shon J, et al. Adalimumab improves cognitive impairment, exerts neuroprotective effects and attenuates neuroinflammation in an Aβ1-40-injected mouse model of Alzheimer's disease[J]. Cytotherapy, 2019, 21:671-682.
[60] Prattichizzo F, Giuliani A, Recchioni R, et al. Anti-TNF-α treatment modulates SASP and SASP-related microRNAs in endothelial cells and in circulating angiogenic cells[J]. Oncotarget, 2016, 7:11945-11958.
[61] Kirkland JL, Tchkonia T. Cellular senescence:a translational perspective[J]. EBioMedicine, 2017, 21:21-28.
[62] Xu M, Pirtskhalava T, Farr JN, et al. Senolytics improve physical function and increase lifespan in old age[J]. Nat Med, 2018, 24:1246-1256.
[63] Sikora E, Bielak-Zmijewska A, Mosieniak G. Cellular senescence in ageing, age-related disease and longevity[J]. Curr Vasc Pharmacol, 2014, 12:698-706.
相关文献:
1.钮琦, 吴方.Notch信号通路体外和细胞的药物筛选模型的建立和研究[J]. 药学学报, 2014,49(6): 837-842
2.吴文, 卢骋, 陈思宇, 余聂芳.已上市和部分正在Ⅲ期临床开发中的多靶点激酶抑制剂抑酶谱及信号传导通路分析[J]. 药学学报, 2009,44(3): 242-257