药学学报, 2020, 55(1): 15-24
引用本文:
李晓琳, 蒋卫, 樊伟明, 傅小峰, 王璐璐, 蒋建东. 肠道微生物群在中药治疗非酒精性脂肪性肝病中的作用[J]. 药学学报, 2020, 55(1): 15-24.
LI Xiao-lin, JIANG Wei, FAN Wei-ming, FU Xiao-feng, WANG Lu-lu, JIANG Jian-dong. Role of gut microbiota in the treatment of nonalcoholic fatty liver disease with traditional Chinese medicine[J]. Acta Pharmaceutica Sinica, 2020, 55(1): 15-24.

肠道微生物群在中药治疗非酒精性脂肪性肝病中的作用
李晓琳1, 蒋卫2, 樊伟明2, 傅小峰2, 王璐璐1, 蒋建东1
1. 中国医学科学院、北京协和医学院药物研究所药理室, 北京 100050;
2. 浙江省震元制药研究院, 浙江 绍兴 312000
摘要:
非酒精性脂肪性肝病(NAFLD)是一种与遗传和环境因素密切相关的代谢性疾病,可发展为肝纤维化、肝硬化,以致肝细胞癌。近年来,NAFLD的患病率逐年上升,目前还缺乏明确的药物治疗方法。中药在NAFLD防治中具有很大潜力但相关机制研究较少。越来越多的证据表明,肠道菌群与NAFLD的发生发展密切相关,肠道菌研究为阐明中药的作用机制开辟了新的视野。本文旨在介绍肠道菌群与NAFLD发生、发展的关系,解析肠道菌群调节在以中药为基础的NAFLD治疗中的作用及机制,以期为相关研究提供参考。
关键词:    肠道菌群      非酒精性脂肪性肝病      作用机制      中药     
Role of gut microbiota in the treatment of nonalcoholic fatty liver disease with traditional Chinese medicine
LI Xiao-lin1, JIANG Wei2, FAN Wei-ming2, FU Xiao-feng2, WANG Lu-lu1, JIANG Jian-dong1
1. Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China;
2. Institute of Zhejiang Zhenyuan Pharmaceutical Corporation, Shaoxing 312000, China
Abstract:
Nonalcoholic fatty liver disease (NAFLD) is a genetic and environmental factor-associated metabolic disease that can lead to fibrosis, cirrhosis and hepatocellular carcinoma. In recent decades the prevalence of NAFLD has increased, but effective pharmacotherapy is limited. Treatment regimens in traditional Chinese medicine (TCM) have made significant contributions to the control of NAFLD, but underlying mechanisms are far less elucidated. Increasing evidence suggests that gut microbiota play a crucial role in the pathogenesis and development of diseases including NAFLD. The outcomes of such research open a new approach in identifying the molecular mechanisms of TCM. Here we review the evidence that gut microbiota might be a target in the treatment NAFLD using TCM.
Key words:    gut microbiota    nonalcoholic fatty liver disease    mechanism    traditional Chinese medicine   
收稿日期: 2019-07-30
DOI: 10.16438/j.0513-4870.2019-0614
基金项目: 国家科技重大专项重大新药创制基金项目(2018ZX09721003-009-007,2018ZX09711001-003-002,2018ZX09711001-002-005);中国医学科学院医学与健康创新工程重大协同创新项目(2016-I2M-1-011).
通讯作者: 王璐璐,Tel:13621284066,E-mail:wanglulu@imm.ac.cn;蒋建东,Tel:86-10-63017906,E-mail:jiang.jdong@163.com
Email: wanglulu@imm.ac.cn;jiang.jdong@163.com
相关功能
PDF(600KB) Free
打印本文
0
作者相关文章
李晓琳  在本刊中的所有文章
蒋卫  在本刊中的所有文章
樊伟明  在本刊中的所有文章
傅小峰  在本刊中的所有文章
王璐璐  在本刊中的所有文章
蒋建东  在本刊中的所有文章

参考文献:
[1] Younossi ZM, Koenig AB, Abdelatif D, et al. Global epidemiology of nonalcoholic fatty liver disease:meta-analytic assessment of prevalence, incidence, and outcomes[J]. Hepatology, 2016, 64:73-84.
[2] Portillosanchez P, Bril F, Maximos M, et al. High prevalence of nonalcoholic fatty liver disease in patients with type 2 diabetes mellitus and normal plasma aminotransferase levels[J]. J Clin Endocrinol Metab, 2015, 100:2231-2238.
[3] Haas JT, Francque S, Staels B. Pathophysiology and mechanisms of nonalcoholic fatty liver disease[J]. Annu Rev Physiol, 2016, 78:181-205.
[4] Miele L, Marrone G, Lauritano C, et al. Gut-liver axis and microbiota in NAFLD:insight pathophysiology for novel therapeutic target[J]. Curr Pharm Des, 2013, 19:5314-5324.
[5] Suk KT, Kim DJ. Gut microbiota:novel therapeutic target for nonalcoholic fatty liver disease[J]. Expert Rev Gastroenterol Hepatol, 2019, 13:193-204.
[6] O'Hara AM, Shanahan F. The gut flora as a forgotten organ[J]. EMBO Rep, 2006, 7:688-693.
[7] Manasa JS. Role of the normal gut microbiota[J]. World J Gastroenterol, 2015, 21:8787-8803.
[8] Mokhtari Z, Gibson DL, Hekmatdoost A. Nonalcoholic fatty liver disease, the gut microbiome, and diet[J]. Adv Nutr, 2017, 8:240-252.
[9] Huttenhower C, Gevers D, Knight R, et al. Structure, function and diversity of the healthy human microbiome[J]. Nature, 2012, 486:207-214.
[10] Gillespie JJ, Wattam AR, Cammer SA, et al. PATRIC:the comprehensive bacterial bioinformatics resource with a focus on human pathogenic species[J]. Infect Immun, 2011, 79:4286-4298.
[11] Brown CT, Sharon I, Thomas BC, et al. Genome resolved analysis of a premature infant gut microbial community reveals a Varibaculum cambriense, genome and a shift towards fermentation-based metabolism during the third week of life[J]. Microbiome, 2013, 1:30.
[12] Clemente J, Ursell L, Parfrey L, et al. The impact of the gut microbiota on human health:an integrative view[J]. Cell, 2012, 148:1258-1270.
[13] Crawford M, Whisner C, Al-nakkash L, et al. Six-week high-fat diet alters the gut microbiome and promotes cecal inflammation, endotoxin production, and simple steatosis without obesity in male rats[J]. Lipids, 2019, 54:119-131.
[14] Macpherson AJ, de Agüero,MG, Ganal-Vonarburg SC. How nutrition and the maternal microbiota shape the neonatal immune system[J]. Nat Rev Immunol, 2017, 17:508-517.
[15] Zhang W, Jiang S, Qian DW, et al. The interaction between ononin and human intestinal bacteria[J]. Acta Pharm Sin (药学学报), 2014, 49:1162-1168.
[16] Wang Z, Klipfell E, Bennett BJ, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease[J]. Nature, 2011, 472:57-63.
[17] Qin J, Li Y, Cai Z, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes[J]. Nature, 2012, 490:55-60.
[18] Murphy EF, Cotter PD, Hogan A, et al. Divergent metabolic outcomes arising from targeted manipulation of the gut microbiota in diet-induced obesity[J]. Gut Microbes, 2013, 62:220-226.
[19] Roy TL, Llopis M, Lepage P, et al. Intestinal microbiota determines development of non-alcoholic fatty liver disease in mice[J]. Gut, 2013, 62:1787-1794.
[20] Day CP, James OF. Steatohepatitis:a tale of two "hits"[J]. Gastroenterology, 1998, 114:842-845.
[21] Bugianesi E, Marchesini G, Gentilcore E, et al. Fibrosis in genotype 3 chronic hepatitis C and nonalcoholic fatty liver disease:role of insulin resistance and hepatic steatosis[J]. Hepatology, 2006, 44:1648-1655.
[22] Schreuder TC, Verwer BJ, Nieuwkerk CMV, et al. Nonalcoholic fatty liver disease:an overview of current insights in pathogenesis, diagnosis and treatment[J]. World J Gastroenterol, 2008, 14:2474-2486.
[23] Dowman JK, Tomlinson JW, Newsome PN. Pathogenesis of non-alcoholic fatty liver disease[J]. QJM, 2010, 103:71-83.
[24] Buzzetti E, Pinzani M, Tsochatzis EA. The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD)[J]. Metabolism, 2016, 65:1038-1048.
[25] Cortez-Pinto H, Moura MCD, Day CP. Non-alcoholic steatohepatitis:from cell biology to clinical practice[J]. J Hepatol, 2006, 44:197-208.
[26] Silva DD, Silva E, Carvalho F, et al. Mixtures of 3,4-methylenedioxymethamphetamine (ecstasy) and its major human metabolites act additively to induce significant toxicity to liver cells when combined at low, non-cytotoxic concentrations[J]. J Appl Toxicol, 2014, 34:618-627.
[27] Vos MB, Lavine JE. Dietary fructose in nonalcoholic fatty liver disease[J]. Hepatology, 2013, 57:2525-2531.
[28] Pollock NK, Bundy V, Kanto W, et al. Greater fructose consumption is associated with cardiometabolic risk markers and visceral adiposity in adolescents[J]. J Nutr, 2011, 142:251-257.
[29] Mouzaki M, Comelli EM, Arendt BM, et al. Intestinal microbiota in patients with nonalcoholic fatty liver disease[J]. Hepatology, 2013, 58:120-127.
[30] Wang B, Jiang X, Cao M, et al. Altered fecal microbiota correlates with liver biochemistry in nonobese patients with non-alcoholic fatty liver disease[J]. Sci Rep, 2016, 6:32002.
[31] Boursier J, Mueller O, Barret M, et al. The severity of nonalcoholic fatty liver disease is associated with gut dysbiosis and shift in the metabolic function of the gut microbiota[J]. Hepatology, 2016, 63:764-775.
[32] Nistal E, Saenz DM, Ballesteros PM, et al. An altered fecal microbiota profile in patients with non-alcoholic fatty liver disease (NAFLD) associated with obesity[J]. Rev Esp Enferm Dig, 2019, 111:275-282.
[33] Le Roy T, Llopis M, Lepage P, et al. Intestinal microbiota determines development of non-alcoholic fatty liver disease in mice[J]. Gut, 2013, 62:1787-1794.
[34] Aragones G, Gonzalez-garcia S, Aguilar C, et al. Gut microbiota-derived mediators as potential markers in nonalcoholic fatty liver disease[J]. Biomed Res Int, 2019, 2019:8507583.
[35] Anderson JM, Itallie CMV. Physiology and function of the tight junction[J]. Cold Spring Harb Perspect Biol, 2009, 1:a002584.
[36] Jiang W, Wu N, Wang X, et al. Dysbiosis gut microbiota associated with inflammation and impaired mucosal immune function in intestine of humans with non-alcoholic fatty liver disease[J]. Sci Rep, 2015, 5:8096.
[37] Briskey D, Heritage M, Jaskowski LA, et al. Probiotics modify tight-junction proteins in an animal model of nonalcoholic fatty liver disease[J]. Therap Adv Gastroenterol, 2016, 9:463-472.
[38] Giorgio V, Miele L, Principessa L, et al. Intestinal permeability is increased in children with non-alcoholic fatty liver disease, and correlates with liver disease severity[J]. Dig Liver Dis, 2014, 46:556-560.
[39] Alisi A, Manco M, Devito R, et al. Endotoxin and plasminogen activator inhibitor-1 serum levels associated with nonalcoholic steatohepatitis in children[J]. J Pediatr Gastroenterol Nutr, 2010, 50:645-649.
[40] Volynets V, Machann J,Küper MA, et al. A moderate weight reduction through dietary intervention decreases hepatic fat content in patients with non-alcoholic fatty liver disease (NAFLD):a pilot study[J]. Eur J Nutr, 2013, 52:527-535.
[41] Verdam FJ, Rensen SS, Driessen A, et al. Novel evidence for chronic exposure to endotoxin in human nonalcoholic steatohepatitis[J]. Clin J Gastroenterol, 2011, 45:149-152.
[42] Cui Y, Wang Q, Chang R, et al. Intestinal barrier function-non-alcoholic fatty liver disease interactions and possible role of gut microbiota[J]. J Agric Food Chem, 2019, 67:2754-2762.
[43] Lin Z, Zu XP, Xie HS, et al. Research progress in mechanism of intestinal microorganisms in human diseases[J]. Acta Pharm Sin (药学学报), 2016, 51:843-852.
[44] Backhed F, Ding H, Wang T, et al. The gut microbiota as an environmental factor that regulates fat storage[J]. Proc Natl Acad Sci USA, 2004, 101:15718-15723.
[45] Backhed F, Manchester JK, Semenkovich CF, et al. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice[J]. Proc Natl Acad Sci U S A, 2007, 104:979-984.
[46] Zhao ZH, Lai JK, Qiao L, et al. Role of gut microbial metabolites in nonalcoholic fatty liver disease[J]. J Dig Dis, 2019, 20:181-188.
[47] Zhao Y, Wu J, Li JV, et al. Gut microbiota composition modifies fecal metabolic profiles in mice[J]. J Proteome Res, 2013, 12:2987-2999.
[48] Cummings JH, Macfarlane GT. Role of intestinal bacteria in nutrient metabolism[J]. JPEN J Parenter Enteral Nutr, 1997, 21:357-365.
[49] Vinolo MA,Rodrigues HG, Festuccia WT, et al. Tributyrin attenuates obesity-associated inflammation and insulin resistance in high-fat-fed mice[J]. Am J Physiol Endocrinol Metab, 2012, 303:272-282.
[50] Sellmann C, Jin CJ, Degen C, et al. Oral glutamine supplementation protects female mice from nonalcoholic steatohepatitis[J]. J Nutr, 2015, 145:2280-2286.
[51] Del Chierico F, Nobili V, Vernocchi P, et al. Gut microbiota profiling of pediatric nonalcoholic fatty liver disease and obese patients unveiled by an integrated meta-omics-based approach[J]. Hepatology, 2017, 65:451-464.
[52] Smallwood T, Allayee H, Bennett BJ. Choline metabolites:gene by diet interactions[J]. Curr Opin Lipidol, 2016, 27:33-39.
[53] Zeisel SH, Dacosta KA, Youssef M, et al. Conversion of dietary choline to trimethylamine and dimethylamine in rats:dose-response relationship[J]. J Nutr, 1989, 119:800-804.
[54] Dumas ME, Barton RH, Toye A, et al. Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulin-resistant mice[J]. Proc Natl Acad Sci U S A, 2006, 103:12511-12516.
[55] Gerard P. Metabolism of cholesterol and bile acids by the gut microbiota[J]. Pathogens, 2013, 3:14-24.
[56] Jiang C, Xie C, Li F, et al. Intestinal farnesoid X receptor signaling promotes nonalcoholic fatty liver disease[J]. J Clin Invest, 2015, 125:386-402.
[57] Zhu L, Baker SS, Gill C, et al. Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients:a connection between endogenous alcohol and NASH[J]. Hepatology, 2013, 57:601-609.
[58] Cope K, Risby T, Diehl AM. Increased gastroin-testinal ethanol production in obese mice:implications for fatty liver disease pathogenesis[J]. Gastroenterology, 2000, 119:1340-1347.
[59] Anna A, Guido C, Oliveira FL, et al. The role of tissue macrophage-mediated inflammation on NAFLD pathogenesis and its clinical implications[J]. Mediators Inflamm, 2017, 2017:8162421.
[60] Chen P, Stärkel P, Turner JR, et al. Dysbiosis-induced intestinal inflammation activates tumor necrosis factor receptor I and mediates alcoholic liver disease in mice[J]. Hepatology, 2015, 61:883-894.
[61] Brandl K, Schnabl B. Intestinal microbiota and nonalcoholic steatohepatitis[J]. Curr Opin Gastroenterol, 2017, 33:128-133.
[62] Csak T, Velayudham A, Hritz I, et al. Deficiency in myeloid differentiation factor-2 and toll-like receptor 4 expression attenuates nonalcoholic steatohepatitis and fibrosis in mice[J]. Am J Physiol Gastrointest Liver Physiol, 2011, 300:433-441.
[63] Luck H, Tsai S, Chung J, et al. Regulation of obesity-related insulin resistance with gut anti-inflammatory agents[J]. Cell Metab, 2015, 21:527-542.
[64] Woodhouse CA, Patel VC, Singanayagam A, et al. Review article:the gut microbiome as a therapeutic target in the pathogenesis and treatment of chronic liver disease[J]. Aliment Pharmacol Ther, 2018, 47:192-202.
[65] Okubo H, Sakoda H, Kushiyama A, et al. Lactobacillus casei strain Shirota protects against nonalcoholic steatohepatitis development in a rodent model[J]. Am J Physiol Gastrointest Liver Physiol, 2013, 305:911-918.
[66] Mattace Raso G, Simeoli R, Iacono A, et al. Effects of a Lactobacillus paracasei B21060 based synbiotic on steatosis, insulin signaling and toll-like receptor expression in rats fed a high-fat diet[J]. J Nutr Biochem, 2014, 25:81-90.
[67] Xue L, He J, Gao N, et al. Probiotics may delay the progression of nonalcoholic fatty liver disease by restoring the gut microbiota structure and improving intestinal endotoxemia[J]. Sci Rep, 2017, 7:45176.
[68] Pokusaeva K, Fitzgerald GF, Sinderen DV. Carbohydrate metabolism in Bifidobacteria[J]. Genes Nutr, 2011, 6:285-306.
[69] Safari Z, Gerard P. The links between the gut microbiome and non-alcoholic fatty liver disease (NAFLD)[J]. Cell Mol Life Sci, 2019, 76:1541-1558.
[70] Bindels LB, Porporato P, Dewulf EM, et al. Gut microbiota-derived propionate reduces cancer cell proliferation in the liver[J]. Br J Cancer, 2012, 107:1337-1344.
[71] Malaguarnera M, Vacante M, Antic T, et al. Bifidobacterium longum with fructo-oligosaccharides in patients with non alcoholic steatohepatitis[J]. Dig Dis Sci, 2012, 57:545-553.
[72] Mofidi F, Poustchi H, Yari Z, et al. Synbiotic supplementation in lean patients with non-alcoholic fatty liver disease:a pilot, randomised, double-blind, placebo-controlled, clinical trial[J]. Br J Nutr, 2017, 117:662-668.
[73] Wiest R, Albillos A, Trauner M, et al. Targeting the gut-liver axis in liver disease[J]. J Hepatol, 2017, 67:1084-1103.
[74] Ponziani FR, Scaldaferri F, Petito V, et al. The role of antibiotics in gut microbiota modulation:the eubiotic effects of rifaximin[J]. Dig Dis, 2016, 34:269-278.
[75] Wu WC, Zhao W, Li S. Small intestinal bacteria overgrowth decreases small intestinal motility in the NASH rats[J]. World J Gastroenterol, 2008, 14:313-317.
[76] Bergheim I, Weber S, Vos M, et al. Antibiotics protect against fructose-induced hepatic lipid accumulation in mice:role of endotoxin[J]. J Hepatol, 2008, 48:983-992.
[77] Madrid AM, Hurtado C, Venegas M, et al. Long-term treatment with cisapride and antibiotics in liver cirrhosis:effect on small intestinal motility, bacterial over-growth, and liver function[J]. Am J Gastroenterol, 2001, 96:1251-1255.
[78] Janssen AWF, Houben T, Katiraei S, et al. Modulation of the gut microbiota impacts nonalcoholic fatty liver disease:a potential role for bile acids[J]. J Lipid Res, 2017, 58:1399-1416.
[79] Jiang C, Xie C, Li F, Zhang L, et al. Intestinal farnesoid X receptor signaling promotes nonalcoholic fatty liver disease[J]. J Clin Invest, 2015, 125:386-402.
[80] Porras D, Nistal E, Martinez-florez S, et al. Functional interactions between gut microbiota transplantation, quercetin, and high-fat diet determine non-alcoholic fatty liver disease development in germ-free mice[J]. Mol Nutr Food Res, 2019, 63:e1800930.
[81] Smits LP, Bouter KEC, de Vos WM, et al. Therapeutic potential of fecal microbiota transplantation[J]. Gastroenterology, 2013, 145:946-953.
[82] Zhou D, Pan Q, Shen F, et al. Total fecal microbiota transplantation alleviates high-fat diet-induced steatohepatitis in mice via beneficial regulation of gut microbiota[J]. Sci Rep, 2017, 7:1529.
[83] Chang XX, Wang Z, Zhang JL, et al. Lipid profiling of the therapeutic effects of berberine in patients with nonalcoholic fatty liver disease[J]. J Transl Med, 2016, 14:266.
[84] Cao Y, Pan Q, Cai W, et al. Modulation of gut microbiota by berberine improves steatohepatitis in high-fat diet-fed Balb/c mice[J]. Arch Iran Med, 2016, 19:197-203.
[85] Li D, Zheng J, Hu Y, et al. Amelioration of intestinal barrier dysfunction by berberine in the treatment of nonalcoholic fatty liver disease in rats[J]. Pharmacogn Mag, 2017, 13:677-682.
[86] Zhu CX, Cang Z, Jiazireya ZYNT, et al. Effects of berberine on gut microbiota of rats with non-alcoholic fatty liver disease induced by high-fat diet[J]. J Shanghai Jiaotong Univ (Med Sci) (上海交通大学学报(医学版)), 2015, 35:483-488.
[87] Zhang YY, Yan JJ, Zhang P, et al. Berberine maintains gut microbiota homeostasis and ameliorates liver inflammation in experimental non-alcoholic fatty liver disease[J]. Chin J Gastroenterol (胃肠病学), 2018, 23:209-215.
[88] Wang LL, Guo HH, Huang S, et al. Comprehensive evaluation of SCFA production in the intestinal bacteria regulated by berberine using gas-chromatography combined with polymerase chain reaction[J]. J Chromatogr B, 2017, 1057:70-80.
[89] Qiao Y, Sun J, Xia S, et al. Effects of resveratrol on gut microbiota and fat storage in a mouse model with high-fat-induced obesity[J]. Food Funct, 2014, 5:1241-1249.
[90] Yao YW. The Role of Gut-Liver Axis in the Pathogenesis of NAFLD Miceand Possible Mechanism of Resveratrol (肠肝轴在NAFLD小鼠发病中的作用及白藜芦醇对其作用机制的初步探讨)[D]. Shijiazhuang:Hebei Medical University, 2017.
[91] Faghihzadeh F, Adibi P, Rafiei R, et al. Resveratrol supplementation improves inflammatory biomarkers in patients with nonalcoholic fatty liver disease[J]. Nutr Res, 2014, 34:837-843.
[92] Chen S, Zhao X, Ran L, et al. Resveratrol improves insulin resistance, glucose and lipid metabolism in patients with nonalcoholic fatty liver disease:a randomized controlled trial[J]. Dig Liver Dis, 2015, 47:226-232.
[93] Shen MS, Song MX, Zhang SQ. Effect of Schisandra chinensis on intestinal flora and cirrhotic rats[J]. For By-Prod Spec China (中国林副特产), 2003, 1:8.
[94] Wang L, Gao CZ, Cui SY, et al. Enzyme supplemented extraction of polysaccharides from Schisandra chinensis and its effects on intestinal flora in mice[J]. Food Res Dev (食品研究与开发), 2018, 39:197-203.
[95] Axling U, Olsson C, Xu J, et al. Green tea powder and Lactobacillus plantarum, affect gut microbiota, lipid metabolism and inflammation in high-fat fed C57BL/6J mice[J]. Nutr Metab, 2012, 9:105.
[96] Wang L, Zeng B, Zhang X, et al. The effect of green tea polyphenols on gut microbial diversity and fat deposition in C57BL/6J HFA mice[J]. Food Funct, 2016, 7:4956-4966.
[97] Wang L, Zeng B, Liu Z, et al. Green tea polyphenols modulate colonic microbiota diversity and lipid metabolism in high-fat diet treated HFA mice[J]. J Food Sci, 2018, 83:864-873.
[98] Wang LC, Pan TM, Tsai TY. Lactic acid bacteria-fermented product of green tea and Houttuynia cordata leaves exerts anti-adipogenic and anti-obesity effects[J]. J Food Drug Anal, 2018, 26:973-984.
[99] Daebang S, Woo JH, Donghyun C, et al. Fermented green tea extract alleviates obesity and related complications and alters gut microbiota composition in diet-induced obese mice[J]. J Med Food, 2015, 18:549-556.
[100] Ma JH, Yu XY, Zhang N, et al. Research progress on the effect of Sijunzi decoction on intestinal structure and function[J]. Chin J Surg Integr Tradit West Med (中国中西医结合外科杂志), 2015, 21:328-330.
[101] Liu Y. Pharmacological study of sijunzi decoction on gut microbiota disorder and normal gastrointestinal function in animals[J]. World Clin Med (世界临床医学), 2016, 10:170-171.
[102] Zhang RL, Zhang SH, Feng SQ. The effect of Jiaweisijunzi decoction on intestinal muacosal barrier function after gastroenteric operation[J]. Chin J Surg Integr Trad West Med (中国中西医结合外科杂志), 2006, 12:6-9.
[103] Yue BQ. Sijunzi decoction treating 23 cases of diarrhea caused by intestinal flora imbalance[J]. Chin Health Care Nutr (中国保健营养), 2012, 22:4754-4754.
[104] Su JG. Clinical observation on the treatment of nonalcoholic fatty liver with junzi decoction[J]. Chin J Tradit Chin Med Pharm (中华中医药杂志), 2004, 19:494-495.
[105] Hai YM, Huang F, Leng J, et al. Qushi Huayu decoction protected gut mucosa barrier injury of non-alcoholic fatty liver disease mice[J]. Chin J Integr Tradit West Med (中国中西医结合杂志), 2018, 38:1454-1460.
[106] Huang F, Peng JH, Li XF, et al. Effect of Qushi Huayu decoction on non-alcoholic steatohepatitis in mice induced by high-fat diets[J]. Chin J Integr Tradit West Med Liver Dis (中西医结合肝病杂志), 2013, 23:282-285.
[107] Zhu Q, Wang XG, Wang Q, et al. Effect of Xiaozhitang on intestinal flora of mice with NAFLD[J]. Chin J Exp Tradit Med Form (中国实验方剂学杂志), 2017, 23:172-178.
[108] Lin L, Liang HQ, Zhuang HL, et al. Effect of Zaozhu Yinchen recipe on intestinal flora in treatment of nonalcoholic steatohepatitis[J]. Chin J Integr Tradit West Med (中国中西医结合杂志), 2018, 38:673-676.
[109] Li Y, Yue WY, Shen TB. Effect of "Yiqi Qinghua Decoction" on intestinal flora in non-alcoholic fatty liver disease rats[J]. Shanghai J Tradit Chin Med (上海中医药杂志), 2015, 49:79-83.
[110] Xu J, Chen HB, Li SL. Understanding the molecular mechanisms of the interplay between herbal medicines and gut microbiota[J]. Med Res Rev, 2017, 37:1140-1185.
[111] Wang Y, Tong Q, Shou JW, et al. Gut microbiota-mediated personalized treatment of hyperlipidemia using berberine[J]. Theranostics, 2017, 7:2443-2451.
相关文献:
1.宋玮, 郑伟, 张洁, 张涛, 刘曙晨, 余利岩, 马百平.中药皂苷类成分的体内代谢研究进展[J]. 药学学报, 2018,53(10): 1609-1619
2.徐晶晶, 尚明英, 徐风, 李耀利, 刘广学, 王璇, 蔡少青.临床常用中西药血药浓度的比较与分析[J]. 药学学报, 2017,52(8): 1222-1234