药学学报, 2020, 55(1): 33-37
引用本文:
李惠兰, 金一, 毛源婷, 徐国良, 房元英. 一氧化氮对肿瘤作用的浓度依赖作用和化疗增敏机制[J]. 药学学报, 2020, 55(1): 33-37.
LI Hui-lan, JIN Yi, MAO Yuan-ting, XU Guo-liang, FANG Yuan-ying. Concentration-dependent effects of nitric oxide on tumors and chemosensitivity[J]. Acta Pharmaceutica Sinica, 2020, 55(1): 33-37.

一氧化氮对肿瘤作用的浓度依赖作用和化疗增敏机制
李惠兰1, 金一1, 毛源婷1, 徐国良2, 房元英1
1. 江西中医药大学中药固体制剂制造技术国家工程研究中心, 江西 南昌 330004;
2. 江西中医药大学中医基础理论分化发展研究中心, 江西 南昌 330004
摘要:
肿瘤对细胞毒性药物治疗的剂量限制和耐药性是医学肿瘤学领域的一个严重障碍。面对这一障碍,一氧化氮(nitric oxide,NO)作为肿瘤超敏化的有力佐剂,已用于传统的化疗和放射治疗。NO的浓度是影响其发挥抗肿瘤作用的一个重要因素。本综述总结了NO对肿瘤细胞的浓度依赖作用及化疗增敏的机制,为合理利用NO发挥抗肿瘤作用,增加肿瘤细胞对药物的敏感性,克服多药耐药及抗肿瘤新药开发提供论据。
关键词:    一氧化氮      肿瘤      浓度      机制      化疗增敏     
Concentration-dependent effects of nitric oxide on tumors and chemosensitivity
LI Hui-lan1, JIN Yi1, MAO Yuan-ting1, XU Guo-liang2, FANG Yuan-ying1
1. National Engineering Research Center for the Manufacturing Technology of Solid Chinese Medicine, Jiangxi University of TCM, Nanchang 330004, China;
2. Research Center for Differentiation and Development of TCM Basic Theory, Jiangxi University of TCM, Nanchang 330004, China
Abstract:
The resistance and dose limitation of tumors is a serious obstacle to cytotoxic drug therapy in the field of medical oncology. Nitric oxide (NO) is a powerful adjuvant for tumor hypersensitivity for traditional chemotherapy and radiation therapy. The concentration of NO plays an important role in affecting its anti-tumor effect. This review summarizes the mechanism of concentration-dependent effects of NO on tumor cells and the mechanism of chemotherapy sensitization. It provides evidence for rational use of NO to exert anti-tumor effects, and overcoming multidrug resistance and anti-tumor drug development.
Key words:    nitric oxide    tumor    concentration    mechanism    chemotherapy sensitization   
收稿日期: 2019-06-20
DOI: 10.16438/j.0513-4870.2019-0491
基金项目: 江西省自然科学基金青年科学基金资助项目(20181BAB215043);江西省自然科学基金资助项目(20171BAB205103).
通讯作者: 徐国良,Tel:86-791-87119650,E-mail:xuguoliang6606@126.com;房元英,Tel:86-791-87119652,E-mail:fangyuanying@163.com
Email: xuguoliang6606@126.com;fangyuanying@163.com
相关功能
PDF(924KB) Free
打印本文
0
作者相关文章
李惠兰  在本刊中的所有文章
金一  在本刊中的所有文章
毛源婷  在本刊中的所有文章
徐国良  在本刊中的所有文章
房元英  在本刊中的所有文章

参考文献:
[1] Mocellin S, Bronte V, Nitti D. Nitric oxide, a double edged sword in cancer biology:searching for therapeutic opportunities[J]. Med Res Rev, 2007, 27:317-352.
[2] Vahora H,Khan MA, Alalami U, et al. The potential role of nitric oxide in halting cancer progression through chemoprevention[J]. J Cancer Prev, 2016, 21:1-12.
[3] Prueitt RL, Boersma BJ, Howe TM, et al. Inflammation and IGF-I activate the Akt pathway in breast cancer[J]. Int J Cancer, 2007, 120:796-805.
[4] Lai HH, Li JN, Wang MY, et al. HIF-1α promotes autophagic proteolysis of Dicer and enhances tumor metastasis[J]. J Clin Invest, 2018, 128:625-643.
[5] Coneski PN, Schoenfisch MH. Nitric oxide release:part III. measurement and reporting[J]. Chem Soc Rev, 2012, 41:3753-3758.
[6] Kruiswijk F, Labuschagne CF, Vousden KH. p53 in survival, death and metabolic health:a lifeguard with a licence to kill[J]. Nat Rev Mol Cell Biol, 2015, 16:393-405.
[7] Weinberg RA, Zhan QM, Liu ZH, et al. P53 and apoptosis:patronus and executioner//The Biology of Cancer[M]. 2nd Ed. Beijing:Science Press, 2018:351-358.
[8] Chang CF, Diers AR, Hogg N. Cancer cell metabolism and the modulating effects of nitric oxide[J]. Free Radic Biol Med, 2015, 79:324-336.
[9] Thomas DD, Espey MG, Ridnour LA, et al. Hypoxic inducible factor 1alpha, extracellular signal-regulated kinase, and are regulated by distinct threshold concentrations of nitric oxide[J]. Proc Natl Acad Sci U S A, 2004, 101:8894-8899.
[10] Somasundaram V, Basudhar D, Bharadwaj G, et al. Molecular mechanisms of nitric oxide in cancer progression, signal transduction and metabolism[J]. Antioxid Redox Signal, 2019, 30:1124-1143.
[11] Gallo O, Schiavone N, Papucci L, et al. Down-regulation of nitric oxide synthase-2 and cyclooxygenase-2 pathways by p53 in squamous cell carcinoma[J]. Am J Pathol, 2003, 163:723-732.
[12] Hsieh JK, Kletsas D, Clunn G, et al. p53, p21(WAF1/CIP1), and MDM2 involvement in the proliferation and apoptosis in an in vitro model of conditionally immortalized human vascular smooth muscle cells[J]. Arterioscler Thromb Vasc Biol, 2000, 20:636-644.
[13] Borutaite V, Brown GC. S-nitrosothiol inhibition of mitochondrial complex I causes a reversible increase in mitochondrial hydrogen peroxide production[J]. Biochim Biophys Acta, 2006, 1757:562-566.
[14] Singh S, Gupta A. Nitric oxide:role in tumour biology and iNOS/NO-based anticancer therapies[J]. Cancer Chemother Pharmacol, 2011, 67:1211-1224.
[15] Monteiro HP, Costa PE, Reis AK, et al. Nitric oxide:protein tyrosine phosphorylation and protein S-nitrosylation in cancer[J]. Biomed J, 2015, 38:380-388.
[16] Monteiro HP, Arai RJ, Travassos LR. Protein tyrosine phosphorylation and protein tyrosine nitration in redox signaling[J]. Antiox Redox Signal, 2008, 10:843-889.
[17] Rapozzi V, Della Pietra E, Bonavida B. Dual roles of nitric oxide in the regulation of tumor cell response and resistance to photodynamic therapy[J]. Redox Biol, 2015, 6:311-317.
[18] Laval F, Wink DA. Inhibition by nitric oxide of the repair protein, O6-methylguanine-DNA-methy ltransferase[J]. Carcinogenesis, 1994, 15:443-447.
[19] Xu W, Liu L, Charles IG, et al. Nitric oxide induces coupling of mitochondrial signalling with the endoplasmic reticulum stress response[J]. Nat Cell Biol, 2004, 6:1129-1134.
[20] Martin JD, Seano G, Jain RK. Normalizing function of tumor vessels:progress, opportunities, and challenges[J]. Annu Rev Physiol, 2019, 81:505-534.
[21] Krishnatry AS, Fung SM, Brazeau DA, et al. Nitroglycerin alters matrix remodeling proteins in THP-1 human macrophages and plasma metalloproteinase activity in rats[J]. Nitric Oxide, 2011, 24:66-76.
[22] Ridnour LA, Dhanapal S, Hoos M, et al. Nitric oxide-mediated regulation of beta-amyloid clearance via alterations of MMP-9/TIMP-1[J]. J Neurochem, 2012, 123:736-749.
[23] Basudhar D, Somasundaram V, de Oliveira GA, et al. Nitric oxide synthase-2-derived nitric oxide drives multiple pathways of breast cancer progression[J]. Antioxid Redox Signal, 2017, 26:1044-1056.
[24] Chen M, Wu ML, Fan Y, et al. Nitric oxide-releasing drug delivery systems for overcoming drug resistance in chemotherapy[J]. Acta Pharm Sin (药学学报), 2018, 53:1630-1636.
[25] Bonavida B, Garban H. Nitric oxide-mediated sensitization of resistant tumor cells to apoptosis by chemo-immunotherapeutics[J]. Redox Biol, 2015, 6:486-494.
[26] Garban HJ, Bonavida B. Nitric oxide disrupts H2O2-dependent activation of nuclear factor kappa B. Role in sensitization of human tumor cells to tumor necrosis factor-alpha-induced cytotoxicity[J]. J Biol Chem, 2001, 276:8918-8923.
[27] Bonavida B, Baritaki S. The novel role of Yin Yang 1 in the regulation of epithelial to mesenchymal transition in cancer via the dysregulated NF-κB/Snail/YY1/RKIP/PTEN circuitry[J]. Crit Rev Oncog, 2011, 16:211-226.
[28] Zhu Q, Huang C, Meng X, et al. CYP1A2 contributes to alcohol-induced abnormal lipid metabolism through the PTEN/AKT/SREBP-1c pathway[J]. Biochem Biophy Res Commun, 2019, 513:509-514.
[29] Ridnour LA, Windhausen AN, Isenberg JS, et al. Nitric oxide regulates matrix metalloproteinase-9 activity by guanylyl-cyclase-dependent and -independent pathways[J]. Proc Natl Acad Sci U S A, 2007, 104:16898-16903.
[30] Vahora H, Khan MA, Alalami U, et al. The potential role of nitric oxide in halting cancer progression through chemoprevention[J]. J Cancer Prev, 2016, 21:1-12.
相关文献:
1.张晓平, 邵骏菁, 马大龙, 刘帆, 刘苗苗, 崔清华.天然药物抗肿瘤活性成分及其作用机制研究进展[J]. 药学学报, 2019,54(11): 1949-1957
2.彭彦茜, 杜军, 王红胜.m6A在肿瘤恶性生物学行为中的作用及靶向治疗策略[J]. 药学学报, 2019,54(10): 1771-1782
3.陈敏, 吴梅岭, 范颖, 伍雯.一氧化氮负载的纳米材料作为化疗药物载体逆转肿瘤多药耐药性的研究进展[J]. 药学学报, 2018,53(10): 1630-1636
4.林菁菁, 杨亚军, 沈珑瑛, 潘显道.抗肿瘤药玫瑰树碱及其衍生物的合成和药理研究进展[J]. 药学学报, 2017,52(9): 1387-1396
5.徐晶晶, 尚明英, 徐风, 李耀利, 刘广学, 王璇, 蔡少青.临床常用中西药血药浓度的比较与分析[J]. 药学学报, 2017,52(8): 1222-1234
6.张梦梦, 杨玉婷, 余倩雯, 何勤.pH敏感穿膜肽修饰的载α-半乳糖神经酰胺的脂质体免疫作用机制的初步研究[J]. 药学学报, 2017,52(4): 634-640
7.岳庆喜, 虞红, 何婷, 于海清.三氧化二砷和青蒿素抗肿瘤的机制研究进展[J]. 药学学报, 2016,51(2): 208-214
8.孟艳秋, 刘立伟, 刘冬莹, 宋艳玲.Survivin抑制剂研究进展[J]. 药学学报, 2016,51(3): 347-355
9.常亮, 李晨辉, 高健.靶向Her2的肿瘤治疗性抗体研究进展[J]. 药学学报, 2015,50(5): 516-520
10.唐克, 杨瀚泽, 李燕, 田康, 李超, 周琬琪, 牛非, 冯志强, 陈晓光.小分子靶向化合物T03的抗肿瘤作用及机制研究[J]. 药学学报, 2014,49(6): 861-868
11.许文彦 赵思蒙 曾广智 贺文军 徐会敏 谭宁华.一些重要天然活性环肽化学和生物活性研究进展[J]. 药学学报, 2012,47(3): 271-279
12.尚 海 潘 莉 杨 澍 陈 虹 程卯生.微管蛋白抑制剂的研究进展[J]. 药学学报, 2010,45(9): 1078-1088
13.柳乃方 屈凌波 相秉仁 杨 冉.青蒿素类化合物抗肿瘤机制研究— 青蒿素类化合物/转铁蛋白对接研究[J]. 药学学报, 2009,44(2): 140-144
14.王斌;俞惠兰;肖继皋.钙拮抗剂TMB-8对培养牛大脑中动脉内皮细胞[Ca2+]i和一氧化氮释放的影响[J]. 药学学报, 1998,33(9): 650-654
15.李宗锴;李电东.牛膝多糖的免疫调节作用[J]. 药学学报, 1997,32(12): 881-887