药学学报, 2020, 55(1): 38-44
引用本文:
郑晓洁, 李思泽, 袁雅文, 金莎莎, 李敏, 相小强. 儿童生理药代动力学模型及其在儿科药物研究中的应用[J]. 药学学报, 2020, 55(1): 38-44.
ZHENG Xiao-jie, LI Si-ze, YUAN Ya-wen, JIN Sha-sha, LI Min, XIANG Xiao-qiang. Physiologically based pharmacokinetic modeling for children and its application in pediatric drug research[J]. Acta Pharmaceutica Sinica, 2020, 55(1): 38-44.

儿童生理药代动力学模型及其在儿科药物研究中的应用
郑晓洁1, 李思泽2, 袁雅文2, 金莎莎2, 李敏2, 相小强2
1. 上海中医药大学附属曙光医院, 上海 201203;
2. 复旦大学药学院, 上海 201203
摘要:
生理药代动力学(physiologically based pharmacokinetic,PBPK)模型是预测药物在特殊人群中的药代动力学、药效学和安全性的重要工具。尤其对于儿童这类不易开展临床试验的人群,PBPK模型的应用更是能有效促进儿科药物的开发以及儿童的临床用药。目前,PBPK模型在儿科药物开发中的主要应用有以下几种:临床试验设计、药物相互作用(drug-drug interaction,DDI)的风险评估和儿童给药剂量的确立等。本综述简介了儿童生理药动学模型在儿科药物研究中的优越性,总结了PBPK模型如何实现从成人到儿童的外推,儿童生理药动学模型的理论基础,建模过程及所要注意的重要生理参数,列举了目前PBPK模型在儿科药物研究中的一些应用实例。最后简述了儿童PBPK模型当前的局限性和未来发展方向。
关键词:    儿科药物      生理药代动力学模型      药物相互作用     
Physiologically based pharmacokinetic modeling for children and its application in pediatric drug research
ZHENG Xiao-jie1, LI Si-ze2, YUAN Ya-wen2, JIN Sha-sha2, LI Min2, XIANG Xiao-qiang2
1. Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China;
2. School of Pharmacy, Fudan University, Shanghai 201203, China
Abstract:
Physiologically based pharmacokinetic (PBPK) modeling is an important tool to predict pharmacokinetic or pharmacodynamic profiles in special populations, especially in children and infants where designing and conducting clinical studies is difficult. The application of PBPK modeling can effectively promote the development of pediatric drugs and their clinical use. At present, PBPK modeling of pediatric populations is mainly applied in clinical trial design, drug-drug interaction (DDI) risk assessment, and dose selection in children. This review discusses the advantages of PBPK modeling in pediatric drug research and summarizes how to extrapolate a PBPK model from adults to children. The theoretical basis for pediatric PBPK models, the modelling process and important physiological parameters during the modeling process are introduced. Some successful applications of PBPK modeling in pediatric drug research and development are also presented. This review also analyzes the current limitations and future directions of pediatric PBPK modeling.
Key words:    pediatric drug    physiologically based pharmacokinetic modeling    drug-drug interaction   
收稿日期: 2019-07-23
DOI: 10.16438/j.0513-4870.2019-0594
基金项目: 国家自然科学基金资助项目(81473409);上海市2018年度"科技创新行动计划"实验动物研究领域项目(18140900900);复旦大学附属中山医院闵行分院-复旦大学药学院战略合作自主研究课题融合基金(RO-MY201710).
通讯作者: 相小强,Tel:86-21-51980024,E-mail:xiangxq@fudan.edu.cn
Email: xiangxq@fudan.edu.cn
相关功能
PDF(888KB) Free
打印本文
0
作者相关文章
郑晓洁  在本刊中的所有文章
李思泽  在本刊中的所有文章
袁雅文  在本刊中的所有文章
金莎莎  在本刊中的所有文章
李敏  在本刊中的所有文章
相小强  在本刊中的所有文章

参考文献:
[1] Jones HM, Chen Y, Gibson C, et al. Physiologically based pharmacokinetic modeling in drug discovery and development:a pharmaceutical industry perspective[J]. Clin Pharmacol Ther, 2015, 97:247-262.
[2] Yoshida K, Budha N, Jin JY. Impact of physiologically based pharmacokinetic models on regulatory reviews and product labels:frequent utilization in the field of oncology[J]. Clin Pharmacol Ther, 2017, 101:597-602.
[3] Klassen TP, Hartling L, Hamm M, et al. StaR child health:an initiative for RCTs in children[J]. Lancet, 2009, 374:1310-1312.
[4] Barrett JS, Alberighi OD, Laer S, et al. Physiologically based pharmacokinetic (PBPK) modeling in children[J]. Clin Pharmacol Ther, 2012, 92:40-49.
[5] Alberighi OD, Barrett JS, Laer S, et al. Response to "physiologically based pharmacokinetic modeling at the extremes of age"[J]. Clin Pharmacol Ther, 2013, 93:149.
[6] Shi J, Barrett JS. Pharmacometrics in pediatric drug development and rational dosage[J]. Chin J Clin Pharmacol Ther (中国临床药理学与治疗学), 2010, 15:1-10.
[7] Maharaj AR, Edginton AN. Physiologically based pharmacokinetic modeling and simulation in pediatric drug development[J]. CPT Pharmacometrics Syst Pharmacol, 2014, 3:e150.
[8] Jamei M, Marciniak S, Feng KR, et al. The Simcyp (R) population-based ADME simulator[J]. Expert Opin Drug Met, 2009, 5:211-223.
[9] Grimstein M, Yang Y, Zhang X, et al. Physiologically based pharmacokinetic modeling in regulatory science:an update from the U.S. Food and Drug Administration's Office of Clinical Pharmacology[J]. J Pharm Sci, 2019, 108:21-25.
[10] Mouksassi MS, Marier JF, Cyran J, et al. Clinical trial simulations in pediatric patients using realistic covariates:application to teduglutide, a glucagon-like peptide-2 analog in neonates and infants with short-bowel syndrome[J]. Clin Pharmacol Ther, 2009, 86:667-671.
[11] Edginton AN. Knowledge-driven approaches for the guidance of first-in-children dosing[J]. Pediatr Anesth, 2011, 21:206-213.
[12] Johnson TN, Rostami-Hodjegan A. Resurgence in the use of physiologically based pharmacokinetic models in pediatric clinical pharmacology:parallel shift in incorporating the knowledge of biological elements and increased applicability to drug development and clinical practice[J]. Pediatr Anesth, 2011, 21:291-301.
[13] Duan P, Wu F, Moore JN, et al. Assessing CYP2C19 ontogeny in neonates and infants using physiologically based pharmacokinetic models:impact of enzyme maturation versus inhibition[J]. CPT Pharmacometrics Syst Pharmacol, 2019, 8:158-166.
[14] Maharaj AR, Barrett JS,Edginton AN. A workflow example of PBPK modeling to support pediatric research and development:case study with lorazepam[J]. AAPS J, 2013, 15:455-464.
[15] Duan P, Fisher JW, Wang J. Applications of physiologically based pharmacokinetic (PBPK) models for pediatric populations[M]//Mahmood I, Burckart G. Fundamentals of Pediatric Drug Dosing. Adis Cham, 2016:109-125.
[16] Yellepeddi V, Rower J, Liu X, et al. State-of-the-art review on physiologically based pharmacokinetic modeling in pediatric drug development[J]. Clin Pharmacokinet, 2018, 58:1-13.
[17] Kunz W, Nau H. Differences in in vitro binding of diazepam and N-desmethyldiazepam to maternal and fetal plasma proteins at birth[J]. Clin Pharmacol Ther, 1983, 34:220-226.
[18] McNamara PJ, Alcorn J. Protein binding predictions in infants[J]. AAPS PharmSci, 2002, 4:19-26.
[19] Nau H, Luck W, Kuhnz W, et al. Serum protein binding of diazepam, desmethyldiazepam, furosemide, indomethacin, warfarin, and phenobarbital in human fetus, mother, and newborn infant[J]. Pediatr Pharmacol (New York), 1983, 3:219-227.
[20] Veering BT, Burm AGL, Souverijn JHM, et al. The effect of age on serum concentrations of albumin and alpha-1-acid glycoprotein[J]. Br J Clin Pharmacol, 1990, 29:201-206.
[21] Wallace S. Factors affecting drug-protein binding in the plasma of newborn infants[J]. Br J Clin Pharmacol, 1976, 3:510-512.
[22] International Commission on Radiological Protection. Report of the task group on reference man:anatomical, physilogical and metabolic characteristics[R]. Oxford:Pergamon Press, 1975.
[23] Johnson TN, Rostami-Hodjegan A, Tucker GT. Prediction of the clearance of eleven drugs and associated variability in neonates, infants and children[J]. Clin Pharmacokinet, 2006, 45:931-956.
[24] Maharaj AR,Edginton AN. Examining small intestinal transit time as a function of age:is there evidence to support age-dependent differences among children?[J]. Drug Metab Dispos, 2016, 44:1080-1089.
[25] Maharaj AR,Edginton AN, Fotaki N. Assessment of age-related changes in pediatric gastrointestinal solubility[J]. Pharm Res-Dordr, 2016, 33:52-71.
[26] Johnson TN, Tucker GT, Tanner MS, et al. Changes in liver volume from birth to adulthood:a meta-analysis[J]. Liver Transplant, 2005, 11:1481-1493.
[27] Johnsrud EK, Koukouritaki SB, Divakaran K, et al. Human hepatic CYP2E1 expression during development[J]. J Pharmacol Exp Ther, 2003, 307:402-407.
[28] Vieira I, Sonnier M, Cresteil T. Developmental expression of CYP2E1 in the human liver. Hypermethylation control of gene expression during the neonatal period[J]. Eur J Biochem, 1996, 238:476-483.
[29] Nong A, McCarver DG, Hines RN, et al. Modeling interchild differences in pharmacokinetics on the basis of subject-specific data on physiology and hepatic CYP2E1 levels:a case study with toluene[J]. Toxicol Appl Pharm, 2006, 214:78-87.
[30] Smits A, Annaert P, Allegaert K. Drug disposition and clinical practice in neonates:cross talk between developmental physiology and pharmacology[J]. Int J Pharm, 2013, 452:8-13.
[31] Rhodin MM, Anderson BJ, Peters AM, et al. Human renal function maturation:a quantitative description using weight and postmenstrual age[J]. Pediatr Nephrol, 2009, 24:67-76.
[32] Edginton AN, Schmitt W, Voith B, et al. A mechanistic approach for the scaling of clearance in children[J]. Clin Pharmacokinet, 2006, 45:683-704.
[33] Jamei MJCPR. Recent advances in development and application of physiologically-based pharmacokinetic (PBPK) models:a transition from academic curiosity to regulatory acceptance[J]. Curr Pharmacol Rep, 2016, 2:161-169.
[34] Laer S, Barrett JS, Meibohm B. The in silico child:using simulation to guide pediatric drug development and manage pediatric pharmacotherapy[J]. J Clin Pharmacol, 2009, 49:889-904.
[35] Hsien L, Breddemann A, Frobel AK, et al. Off-label drug use among hospitalised children:identifying areas with the highest need for research[J]. Pharm World Sci, 2008, 30:497-502.
[36] Leong R, Vieira MLT, Zhao P, et al. Regulatory experience with physiologically based pharmacokinetic modeling for pediatric drug trials[J]. Clin Pharmacol Ther, 2012, 91:926-931.
[37] Tian XB, Zhang HF, Heimbach T, et al. Clinical pharmacokinetic and pharmacodynamic overview of nilotinib, a selective tyrosine kinase inhibitor[J]. J Clin Pharmacol, 2018, 58:1533-1540.
[38] Heimbach T, Lin W, Hourcade-Potelleret F, et al. Physiologically based pharmacokinetic modeling to supplement nilotinib pharmacokinetics and confirm dose selection in pediatric patients[J]. J Pharm Sci, 2019, 108:2191-2198.
[39] Koukouritaki SB, Manro JR, Marsh SA, et al. Developmental expression of human hepatic CYP2C9 and CYP2C19[J]. J Pharmacol Exp Ther, 2004, 308:965-974.
[40] Huber R, Hartmann M, Bliesath H, et al. Pharmacokinetics of pantoprazole in man[J]. Int J Clin Pharmacol Ther, 1996, 34:S7-16.
[41] Kim A, McCully C, Cruz R, et al. The plasma and cerebrospinal fluid pharmacokinetics of sorafenib after intravenous administration in non-human primates[J]. Invest New Drug, 2012, 30:524-528.
[42] Verscheijden LFM, Koenderink JB, de Wildt SN, et al. Development of a physiologically-based pharmacokinetic pediatric brain model for prediction of cerebrospinal fluid drug concentrations and the influence of meningitis[J]. PLoS Comput Biol, 2019, 15:e1007117.
[43] Strougo A, Eissing T, Yassen A, et al. First dose in children:physiological insights into pharma-cokinetic scaling approaches and their implications in paediatric drug development[J]. J Pharmacokinet Pharmacodyn, 2012, 39:195-203.
[44] Becker C, Willmann S, T Eissing et al. Whole-body physiologically-based pharmacokinetic (WB-PBPK) modeling of moxifloxacin (MFX) to support a translational approach in pediatric study design. Abstracts of the Annual Meeting of the Population Approach Group in Europe[C]. St. Petersburg, PAGE 18, 2009:Abstr 1555, ISSN 1871-6032.
[45] Tylutki Z, Mendyk A, Polak S. Mechanistic physiologically based pharmacokinetic (PBPK) model of the heart accounting for inter-individual variability:development and performance verification[J]. J Pharm Sci, 2018, 107:1167-1177.
[46] Ke A, Barter Z, Rowland-Yeo K, et al. Towards a best practice approach in PBPK modeling:case example of developing a unified efavirenz model accounting for induction of CYPs 3A4 and 2B6[J]. CPT Pharmacometrics Syst Pharmacol, 2016, 5:367-376.