药学学报, 2020, 55(1): 67-73
引用本文:
王心怡, 曾华倩, 胡卫. 华蟾素通过抑制脊髓CCL2/CCR2途径及小胶质细胞的活化缓解骨癌痛[J]. 药学学报, 2020, 55(1): 67-73.
WANG Xin-yi, ZENG Hua-qian, HU Wei. Cionbufagin attenuates bone cancer pain by blocking the activation of microglia in the spinal cord[J]. Acta Pharmaceutica Sinica, 2020, 55(1): 67-73.

华蟾素通过抑制脊髓CCL2/CCR2途径及小胶质细胞的活化缓解骨癌痛
王心怡, 曾华倩, 胡卫
三峡大学医学院, 国家中医药管理局中药药理/肿瘤科研三级实验室, 湖北 宜昌 443002
摘要:
华蟾素具有抗炎镇痛的作用,在治疗骨癌痛方面具有重要价值,但其机制尚不清楚。本实验将4×105个Walker-256细胞接种于SD大鼠左后肢,构建乳腺癌骨转移模型。实验方案经三峡大学医学院医学实验动物伦理委员会审议同意并批准。将大鼠随机分成假手术组、模型组、华蟾素组、吗啡组、生理盐水组、米诺环素组、小胶质细胞抑制剂(RS102895)组和联合用药(华蟾素+米诺环素)组。华蟾素组(5 mL·kg-1)、吗啡组(8 mg·kg-1)及联合用药组(含华蟾素5 mL·kg-1)于造模第9天开始连续静脉注射给药至21天;生理盐水组、米诺环素组(2.5 μg·μL-1,20 μL)、RS102895组(1.5 μg·μL-1,20 μL)、联合用药组(含米诺环素2.5 μg·μL-1,20 μL)在造模第12天开始连续鞘内插管给药至21天,然后处理大鼠。利用苏木精-伊红(H&E)染色法检测大鼠左后肢骨质破坏情况;通过行为学指标观察大鼠造模前、造模第2、5、7、9、12、14、17和20天痛阈值变化;通过免疫荧光及免疫蛋白印迹(Western blot)观察小胶质细胞标记物(Iba-1)的活化及表达;采用酶联免疫吸附法(ELISA)测定大鼠脊髓中肿瘤坏死因子-α(TNF-α)、白细胞介素-1β(IL-1β)和白细胞介素-6(IL-6)的含量变化。H&E结果显示,华蟾素能有效抑制骨癌痛大鼠骨髓腔的破坏;行为学指标及ELISA结果表明,华蟾素治疗明显升高了大鼠机械痛阈值与热痛阈值,同时显著抑制外周炎症因子(TNF-α、IL-1β、IL-6)的释放;免疫荧光检测显示,华蟾素能有效抑制脊髓背角小胶质细胞的激活;Western blot发现,脊髓背角小胶质细胞活化在使用华蟾素注射液后表达受到抑制,趋化因子2(CCL2)/趋化因子受体2(CCR2)途径可能参与华蟾素的镇痛作用。上述结果表明,华蟾素可通过抑制炎性因子释放和脊髓小胶质细胞的激活缓解乳腺癌转移性骨癌痛,此过程可能与抑制CCL2/CCR2途径的激活有关。
关键词:    华蟾素      骨癌痛      小胶质细胞      吗啡      炎性因子      CCL2/CCR2途径     
Cionbufagin attenuates bone cancer pain by blocking the activation of microglia in the spinal cord
WANG Xin-yi, ZENG Hua-qian, HU Wei
Third-grade Pharmacological Laboratory on Traditional Chinese Medicine/State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang 443002, China
Abstract:
Cionbufagin has anti-inflammatory and analgesic effects. It is of great value in the treatment of bone cancer pain, but its mechanism is still unclear. To generate a bone metastasis model of breast cancer, 4×105 Walker-256 cells were inoculated into the left hind limb of SD rats. The experimental protocol was approved by the Medical Laboratory Animal Ethics Committee of Medical College of China Three Gorges University. Rats were randomly divided into sham, model, cionbufagin, morphine, saline, minocycline, microglia inhibitor (RS102895) and co-treatment with cionbufagin and minocycline group. The cionbufagin (5 mL·kg-1, i.p.), morphine (8 mg·kg-1, i.p.) and co-treatment groups (included cionbufagin 5 mL·kg-1, i.p.) received continuous administration from day 9 to day 21. The saline, minocycline (2.5 μg·μL-1, 20 μL), RS102895 (1.5 μg·μL-1, 20 μL) and co-treatment groups (included minocycline 2.5 μg·μL-1, 20 μL) received continuous administration by intrathecal cannulation from day 12 to day 21. Bone destruction of the left hind limb of rats was detected by hematoxylin-eosin staining (H&E). The pain threshold before treatment and at day 2, 5, 7, 9, 12, 14, 17 and 20 was measured by behavioral indexes. Activation and expression of a microglia marker (Iba-1) was determined by immunofluorescence and Western blot. The level of tumor necrosis factor-α (TNF-α), interleukin-1 (IL-1), and interleukin-6 (IL-6) in rat spinal cord was measured by enzyme-linked immunosorbent assay (ELISA). H&E results showed that cionbufagin effectively inhibited the destruction of bone marrow in rats with bone cancer pain; cionbufagin treatment significantly increased the mechanical and thermal pain threshold. Immunofluorescence showed that cionbufagin effectively inhibited the activation of microglia in the spinal dorsal horn. Western blot analysis confirmed that the activation of microglia in the spinal dorsal horn was inhibited by cionbufagin treatment. It was also found that the CCL2/CCR2 pathway may be involved in the analgesic effect of cionbufagin. These results suggest that cionbufagin can effectively alleviate bone cancer pain, possibly by inhibiting the release of inflammatory factors and the activation of spinal microglia cells through the CCL2/CCR2 pathway.
Key words:    cionbufagin    cancer-induced bone pain    microglia    morphine    inflammatory cytokine    CCL2/CCR2 pathway   
收稿日期: 2019-06-15
DOI: 10.16438/j.0513-4870.2019-0479
通讯作者: 胡卫,Tel:86-717-6396558,E-mail:331323129@qq.com
Email: 331323129@qq.com
相关功能
PDF(2340KB) Free
打印本文
0
作者相关文章
王心怡  在本刊中的所有文章
曾华倩  在本刊中的所有文章
胡卫  在本刊中的所有文章

参考文献:
[1] Buga S, Sarria JE. The management of pain in metastatic bone disease[J]. Cancer Control, 2012, 19:154-166.
[2] Colonna M, Butovsky O. Microglia function in the central nervous system during health and neurodegeneration[J]. Ann Rev Immunol, 2017, 35:441-444.
[3] Hains BC, Waxman SG. Activated microglia contribute to the maintenance of chronic pain after spinal cord injury[J]. J Neurisci, 2006, 26:4308-4317.
[4] Jiang JJ, Yao P, Wu XY, et al. Expression and significance of spinal microglia and IL-1β in cancer-induced bone pain[J]. Anat Res (解剖学研究), 2016, 38:44-47.
[5] Song ZP, Xiong BR, Guan XH, et al. Minocycline attenuates bone cancer pain in rats by inhibiting NF-κB in spinal astrocytes[J]. Acta Pharmacol Sin, 2016, 37:753-762.
[6] Tang Y, Le W. Differential roles of M1 and M2 microglia in neurodegenerative diseases[J]. Mol Neurobiol, 2016, 53:1181-1194.
[7] Tikka TM, Koistinaho JE. Minocycline provides neuroprotection against N-methyl-D-aspartate neurotoxicity by inhibiting microglia[J]. J Immunol, 2001, 166:7527-7530.
[8] Xu J, Dong H, Qian Q, et al. Astrocyte-derived CCL2 participates in surgery-induced cognitive dysfunction and neuroinflammation via evoking microglia activation[J]. Behav Brain Res, 2017, 332:145-153.
[9] Zhang Z, Dong Y, Lu Y, et al. Chemokine CCL2 and its receptor CCR2 in the medullary dorsal horn are involved in trigeminal neuropathic pain[J]. J Neuroinflamm, 2012, 9:136-139.
[10] Zhang H, Boyette-Davis JA, Kosturakis AK, et al. Induction of monocyte chemoattractant protein-1(MCP-1) and its receptor CCR2 in primary sensory neurons contributes to paclitaxel-induced peripheral neuropathy[J]. J Pain, 2013, 14:1031-1044.
[11] Hu JH, Zheng XY, Yang JP, et al. Involvement of spinal monocyte chemoattractant protein-1(MCP-1) in cancer-induced bone pain in rats[J]. Neurosci Lett, 2012, 517:60-63.
[12] Hu JH, Wu MY, Tao M, et al. Changes in protein expression and distribution of spinal CCR2 in a rat model of bone cancer pain[J]. Brain Res, 2013, 1509:1-7.
[13] Ji Z, Xiang QS, Stefania E, et al. Expression of CCR2 in both resident and bone marrow-derived microglia plays a critical role in neuropathic pain[J]. J Neurosci, 2007, 27:12396-12406.
[14] Wen LL, Xie XB, Huang W, et al. Anti-inflammatory and analgesic activities of bufalin and its effect on NF-κB signaling[J]. J Sun Yat-Sen Univ(中山大学学报), 2014, 35:680-684.
[15] Wang Y. Pharmacological effects of cionbufagin[J]. Nei Mongol J Tradit Chin Med (内蒙古中医药), 2012, 31:76-79.
[16] Thacker MA,Clark AK, Bishop T, et al. CCL2 is a key mediator of microglia activation in neuropathic pain states[J]. Eur J Pain, 2009, 13:263-272.
[17] Liu D, Zhang W, Wang XY, et al. Treatment of cionbufagin on analgesic effect and activation of glial cells in the spinal cord of cancer-induced bone pain rats[J]. Tertogen Carcin Mut (癌变·畸变·突变), 2018, 30:302-306.
[18] Kerba M, Wu JS, Duan Q, et al. Neuropathic pain features in patients with bone metastases referred for palliative radiotherapy[J]. J Clin Onco, 2010, 28:4892-4899.
[19] Kane CM, Hoskin P, Bennett MI. Cancer induced bone pain[J]. BMJ, 2015, 350:h315.
[20] Ji D, Liang Z, Liu G, et al. Bufalin attenuates cancer-induced pain and bone destruction in a model of bone cancer[J]. Naunyn Schmiedebergs Arch Pharmacol, 2017, 390:1211-1219.
[21] Liviu F, Razia A, Michael B, et al. Pain:persistent postsurgery and bone cancer-related pain[J]. J Int Med Res, 2019, 47:528-543.
[22] Xu YM, Shen W, Cheng Y, et al. Role of chemokine CCL2 antibody in the treatment of tibia cancer pain in rats[J]. J Clin Anesthesiol (临床麻醉学杂志), 2012, 28:81-83.
[23] Milligan E, Watkins L. Pathological and protective roles of glia in chronic pain[J]. Nat Rev Neurosci, 2009, 10:23-30.
[24] Li XS, Yuan N, Meng CY. Glial cells:participants in neuropathic pain[J]. Orthop J China (中国矫形外科杂志), 2018, 3:1479-1482.
[25] Tian L, Wei H, Piirainen S, et al. Spinal versus brain microglial and macrophage activation traits determine the differential neuroinflammatory responses and analgesic effect of minocycline in chronic neuropathic pain[J]. Brain Behav Immun, 2016, 58:107-117.
[26] Ji Z, Yves DK. Spatial and temporal relationship between monocyte chemoattractant protein-1 expression and spinal glial activation following peripheral nerve injury[J]. J Neurochem, 2010, 97:772-783.
[27] Catherine A, Lindia JA, Anne Marie C, et al. Impaired neuropathic pain responses in mice lacking the chemokine receptor CCR2[J]. Proc Natl Acad Sci U S A, 2003, 100:7947-7952.