药学学报, 2020, 55(1): 139-145
引用本文:
邓赛, 张灵敏, 王萍, 李仕颖, 林潮金, 傅小媚, 余细勇. 人工外泌体共递送siRNA和蛋白的递送系统的设计及体外评价[J]. 药学学报, 2020, 55(1): 139-145.
DENG Sai, ZHANG Ling-min, WANG Ping, LI Shi-ying, LIN Chao-jin, FU Xiao-mei, YU Xi-yong. Design and in vitro evaluation of delivery systems for co-delivery of siRNA and proteins by mimetic exosomes[J]. Acta Pharmaceutica Sinica, 2020, 55(1): 139-145.

人工外泌体共递送siRNA和蛋白的递送系统的设计及体外评价
邓赛, 张灵敏, 王萍, 李仕颖, 林潮金, 傅小媚, 余细勇
广州医科大学, 广东省分子靶标与临床药理学重点实验室, 呼吸疾病国家重点实验室药理组, 广东 广州 511436
摘要:
本文制备了人工外泌体,共传递蛋白和核酸,实现多组分药物高效安全共传递。采用阳离子脂质赋形剂二油酰基三甲基铵丙烷(dioleyl trimethylammonium propane,DOTAP)修饰聚乳酸-羟基乙酸共聚物(polylactic acid-glycolic acid copolymer,PLGA)基质来设计优化的制剂,双乳化法制备包裹蛋白和核酸的PLGA/DOTAP纳米粒,再用逆相蒸发法制备最外层的膜结构,此膜结构由二棕榈酰磷脂酰胆碱(1,2-dipalmitoyl-sn-glycero-3-phosphocholine,DPPC)、二油酰磷脂酰胆碱(1,2-dioleoyl-sn-glycero-3-phosphocholine,DOPC)、二硬脂酰磷脂酰胆碱(1,2-distearoyl-sn-glycero-3-phosphocholine,DSPC)、胆固醇及膜蛋白组成,通过超声分散和挤出的方式形成人工外泌体结构,并分析其物理特性和传递效果性质。结果表明,人工外泌体粒径约为156.13 nm,带负电荷(-18.23 ±0.57 mV),能高效共传递蛋白和siRNA,且siRNA能高效抑制目标基因Trim 28的表达。这说明人工外泌体模拟了外泌体结构,实现了多组分药物安全高效的共递送。
关键词:    人工外泌体      聚乳酸-羟基乙酸共聚物      脂质体      纳米材料      药物递送     
Design and in vitro evaluation of delivery systems for co-delivery of siRNA and proteins by mimetic exosomes
DENG Sai, ZHANG Ling-min, WANG Ping, LI Shi-ying, LIN Chao-jin, FU Xiao-mei, YU Xi-yong
Guangdong Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease Pharmacology Group, Guangzhou Medical University, Guangzhou 511436, China
Abstract:
To prepare the mimetic exosomes and co-delivery proteins and nucleic acids, and achieve efficient and safe co-delivery of multi-component drugs, an optimized formulation was designed by modifying a polylactic acid-glycolic acid copolymer (PLGA) matrix with a cationic lipid excipient dioleyl trimethylammonium propane (DOTAP), and a PLGA/DOTAP nanoparticles packaged protein and nucleic acid was prepared by double emulsion method, and the outermost membrane structure prepared by reverse phase evaporation method and consists of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), cholesterol and membrane proteins. The structure of the mimetic exosomes is formed by ultrasonic dispersion and extrusion, and analyzed its characteristics and nature of the transfer effect. The size of mimetic exosomes was about 156.13 nm, with negative charge (-18.23 ±0.57 mV), and it could efficiently co-transfer protein and siRNA, and siRNA could effectively inhibit the expression of target gene Trim28. The mimetic exosomes simulate the structure of exosomes and achieve safe and efficient co-delivery of multi-component drugs.
Key words:    mimetic exosome    polylactic acid-glycolic acid copolymer    liposome    nano-particles    drug delivery   
收稿日期: 2019-07-20
DOI: 10.16438/j.0513-4870.2019-0590
基金项目: 国家自然科学基金资助项目(U1601227,81330007,81700382);广东省科技重点项目(2015B020225006);广东省自然科学基金资助项目(2019A1515012166).
通讯作者: 余细勇,Tel:86-20-37103261,E-mail:yuxycn@aliyun.com
Email: yuxycn@aliyun.com
相关功能
PDF(2988KB) Free
打印本文
0
作者相关文章
邓赛  在本刊中的所有文章
张灵敏  在本刊中的所有文章
王萍  在本刊中的所有文章
李仕颖  在本刊中的所有文章
林潮金  在本刊中的所有文章
傅小媚  在本刊中的所有文章
余细勇  在本刊中的所有文章

参考文献:
[1] Mitragotri S, Burke PA, Langer R. Overcoming the challenges in administering biopharmaceuticals:formulation and delivery strategies[J]. Nat Rev Drug Discov, 2014, 13:655-672.
[2] Kamly N, Fredman G, Subramanian M, et al. Development and in vivo efficacy of targeted polymeric inflammation-resolving nanoparticles[J]. Proc Natl Acad Sci, 2013, 110:6506-6511.
[3] Luk BT, Zhang L. Cell membrane-camouflaged nanoparticles for drug delivery[J]. J Control Release, 2015, 220:600-607.
[4] Ibrahim AG, Cheng K, Marbán E. Exosomes as critical agents of cardiac regeneration triggered by cell therapy[J]. Stem Cell Rep, 2014, 2:606-619.
[5] Hu CJ, Fang RH, Wang K, et al. Nanoparticle biointerfacing by platelet membrane cloaking[J]. Nature, 2015, 526:118-121.
[6] Chen XL, Zhou Y, Liang X, et al. In vitro study of black phosphorus quantum dot-loaded liposomes for photothermal therapy of cervical cancer[J]. Acta Pharm Sin (药学学报), 2019, 54:729-736.
[7] Ju SW, Mu JY, Dokland T, et al. Grape exosome-like nanoparticles induce intestinal stem cells and protect mice from DSS-induced colitis[J]. Mol Ther, 2013, 21:1345-1357.
[8] Lunavat TR, Jang SC, Nilsson L, et al. RNAi delivery by exosome-mimetic nanovesicles-implications for targeting c-Myc in cancer[J]. Biomaterials, 2016, 102:231-238.
[9] Lee SH, Mok H, Lee YH, et al. Self-assembled siRNA-PLGA conjugate micelles for gene silencing[J]. J Control Release, 2011, 152:152-158.
[10] Vlassov AV, Magdaleno S, Setterquist R, et al. Exosomes:current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials[J]. Biochim Biophys Acta, 2012, 1820:940-948.
[11] Clotilde T, Laurencel Z, Sebastian A. Exosomes:composition, biogenesis and function[J]. Nat Rev Immunol, 2002, 2:569-579.
[12] Clotilde T. Exosomes:secreted vesicles and intercellular communications[J]. Biol Rep, 2011, 3:1-8.
[13] Mathivanan S, Ji H, Simpson RJ. Exosomes:extracellular organelles important in intercellular communication[J]. J Proteomics, 2010, 3:1907-1920.
[14] Raposo G, Stoorvogel W. Extracellular vesicles:exosomes, microvesicles, and friends[J]. J Cell Biol, 2013, 200:373-383.
[15] Schneider A, Simons M. Exosomes:vesicular carriers for intercellular communication in neurodegenerative disorders[J]. Cell Tissue Res, 2013, 352:33-47.
[16] Lai RC, Chen TS, Lim SK. Mesenchymal stem cell exosome:a novel stem cell-based therapy for cardiovascular disease[J]. Regen Med, 2011, 6:481-492.
[17] Lu LL, Liu YJ, Yang SG, et al. Isolation and characterization of human umbilical cord mesenchymal stem cells with hematopoiesis-supportive function and other potentials[J]. Haematologica, 2006, 91:1017-1026.
[18] Han Y, Tao R, Sun T, et al. Optimization of human umbilical cord mesenchymal stem cell isolation and culture methods[J]. Cytotechnology, 2013, 65:819-827.
[19] Jensen DK, Jensen LB, Koocheki S, et al. Design of an inhalable dry powder formulation of DOTAP-modified PLGA nanoparticles loaded with siRNA[J]. J Control Release, 2012, 157:141-148.
[20] Molinaro R, Corbo C, Martinez JO, et al. Biomimetic proteolipid vesicles for targeting inflamed tissues[J]. Nat Mater, 2016, 15:1037-1046.
[21] Luo L, Tang J, Nishi K, et al. Fabrication of synthetic mesenchymal stem cells for the treatment of acute myocardial infarction in mice[J]. Circul Res, 2017, 120:1768-1775.
[22] Luk BT, Zhang L. Cell membrane-camouflaged nanoparticles for drug delivery[J]. J Control Release, 2015, 220:600-607.
相关文献:
1.李佳琪, 秦璐, 郑煌亮, 李晓然, MICHAEL Moehwald, 陈霖, 张予阳, 毛世瑞.聚乙二醇磷脂包裹的聚乳酸羟基乙酸微球防止肺泡巨噬细胞吞噬[J]. 药学学报, 2019,54(7): 1303-1311
2.杨艳芳, 谢向阳, 杨阳, 张慧, 梅兴国.粒径与表面电荷影响脂质体体内药物靶向递送的研究进展[J]. 药学学报, 2013,48(11): 1644-1650