药学学报, 2020, 55(1): 152-159
引用本文:
郑汉, 虞慕瑶, 濮春娟, 陈美兰, 李福全, 申业, 黄璐琦. 香樟3-羟基-3-甲基戊二酰辅酶A还原酶(CcHMGRs)基因家族的克隆及表达分析[J]. 药学学报, 2020, 55(1): 152-159.
ZHENG Han, YU Mu-yao, PU Chun-juan, CHEN Mei-lan, LI Fu-quan, SHEN Ye, HUANG Lu-qi. Cloning and expression analysis of 3-hydroxy-3-methylglutaryl coenzyme A reductase (CcHMGR) genes in Cinnamomum camphora (L.) Presl[J]. Acta Pharmaceutica Sinica, 2020, 55(1): 152-159.

香樟3-羟基-3-甲基戊二酰辅酶A还原酶(CcHMGRs)基因家族的克隆及表达分析
郑汉1,2, 虞慕瑶2, 濮春娟2, 陈美兰2, 李福全3, 申业2, 黄璐琦2
1. 天津中医药大学, 天津 301617;
2. 中国中医科学院中药资源中心, 道地药材国家重点实验室培育基地, 北京 100700;
3. 呼伦贝尔蒙医医院, 内蒙古 呼伦贝尔 021000
摘要:
3-羟基-3-甲基戊二酰辅酶A还原酶(3-hydroxy-3-methylglutaryl coenzyme A reductase,HMGR)是萜类甲羟戊酸途径(mevalonic acid pathway,MVA)上的第一个限速酶,是细胞质中萜类代谢途径中的重要调控位点。本研究以5种化学型的香樟(Cinnamomum camphora)作为实验材料,基于转录组数据,从香樟cDNA中克隆出2个HMGR基因,分别命名为CcHMGR1(GenBank登录号:MN163055)和CcHMGR2(GenBank登录号:MN163056)。基因包含开放阅读框(ORF)分别为1 689 bp和1 683 bp,编码562和560个氨基酸残基,生物信息学分析推测其分子质量为59.819 kDa和59.397 kDa,等电点(theoretical pI)为8.20和8.61,均不含信号肽,存在2个跨膜结构。结合蛋白质保守区以及进化树分析,证实该基因确为HMGR家族基因。利用实时荧光定量PCR检测,CcHMGR1CcHMGR2在香樟5种化学型中的表达模式类似,均在油樟中的表达量要高于另外4种化学型;并且2个CcHMGRs基因均在根中表达量最高,枝中最低。本研究首次从香樟中克隆出了CcHMGRs cDNA全长,并揭示了CcHMGRs在5种化学型及不同组织中的差异表达,为香樟萜类化合物生物合成途径关键酶基因的挖掘提供研究基础。
关键词:    香樟      3-羟基-3-甲基戊二酰辅酶A还原酶(CcHMGR)      生物信息学      化学型      表达分析     
Cloning and expression analysis of 3-hydroxy-3-methylglutaryl coenzyme A reductase (CcHMGR) genes in Cinnamomum camphora (L.) Presl
ZHENG Han1,2, YU Mu-yao2, PU Chun-juan2, CHEN Mei-lan2, LI Fu-quan3, SHEN Ye2, HUANG Lu-qi2
1. Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China;
2. State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China;
3. Hulunbeier Mongolian Medical Hospital, Hulunbeier 021000, China
Abstract:
3-Hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) is the first rate-limiting enzyme of terpenoid biosynthesis in the mevalonic acid pathway (MVA) pathway. It is an important regulatory site in terpenoids metabolism pathway in the cytoplasm. According to the transcriptome database of Cinnamomum camphora, two HMGRs named CcHMGR1 (GenBank:MN163055) and CcHMGR2 (GenBank:MN163056) were cloned by cDNA from C. camphora. The ORF of CcHMGR1 and CcHMGR2 is composed of 1 689 bp and 1 683 bp, respectively, encoding 562 and 560 amino acids. The bioinformatics analysis of CcHMGR1 and CcHMGR2 indicated that the molecular weight of the encoded protein is 59.819 kDa and 59.397 kDa, with a theoretically isoelectric point of 8.20 and 8.61, respectively. There are 2 transmembrane structures without signal peptide existing in the encoded amino acid of CcHMGRs. The analysis of sequence alignment and phylogenetic tree showed that the CcHMGRs belonged to the HMGR family. The camphor is divided into five chemitypes, according to the main chemical compounds in C. camphora. The results of the real time PCR indicated that the expression level of CcHMGRs in Cineol type was higher than that in Linalool type, iso-nerolidol type, Camphor type and Borneol type. CcHMGRs expressed highest in roots and lowest in branches. In this study, the cDNA full length of CcHMGRs were cloned from C. camphora for the first time. Our results revealed that the expression level of CcHMGRs were different among five chemical types and different plant tissues, and the research provides foundation for further study of the terpenoids biosynthetic pathway in C. camphora.
Key words:    Cinnamomum camphora    3-hydroxy-3-methylglutaryl coenzyme A reductase    bioinformatics    chemical type    expression analysis   
收稿日期: 2019-08-14
DOI: 10.16438/j.0513-4870.2019-0640
基金项目: 国家自然科学基金资助项目(81573533).
通讯作者: 申业,Tel:86-10-64014411-2955,E-mail:shenye70@hotmail.com;黄璐琦,E-mail:huangluqi01@126.com
Email: shenye70@hotmail.com;huangluqi01@126.com
相关功能
PDF(3233KB) Free
打印本文
0
作者相关文章
郑汉  在本刊中的所有文章
虞慕瑶  在本刊中的所有文章
濮春娟  在本刊中的所有文章
陈美兰  在本刊中的所有文章
李福全  在本刊中的所有文章
申业  在本刊中的所有文章
黄璐琦  在本刊中的所有文章

参考文献:
[1] Chen SY, Zhao LH, Xu XJ, et al. Linalool natural resources and its exploitation and utilization[J]. Chin Fore Sci Technol (林业科技开发), 2013, 27:13-17.
[2] Xu YM, Jiang ZH, Bao CH, et al. Comparative studies on differences of oil contents and wood properties among five clones of camphor trees[J]. J Huazhong Agric Univ (华中农业大学学报), 2001, 20:484-488.
[3] Singh P, Srivastava B, Kumar A, et al. Fungal contamination of raw materials of some herbal drugs and recommendation of Cinnamomum camphora oil as herbal fungitoxicant[J]. Microb Ecol, 2008, 56:555-560.
[4] Herman A, Tambor K, Herman A. Linalool affects the antimicrobial efficacy of essential oils[J]. Curr Microbiol, 2016, 72:165-172.
[5] Luo SH, Huang T, Shi ZP, et al. A comparative study on antioxidant activities of essential oils from four Cinnamomum plants[J]. J Chongqing Norm Univ Nat Sci Ed (重庆师范大学·自然科学版), 2018, 35:111-116.
[6] Zan LX. Optimization of the extraction technology of camphor pericarp anthocyanins by response surface method[J]. Guihaia (广西植物), 2015, 35:603-608.
[7] Wu XH. Comparative analysis of anti-inflammatory and analgesic effects of extracts from the stems and branches of camphor trees with different diameters and camphor roots[J]. Chin J Mod Drug Appl (中国现代药物应用), 2017, 11:197-198.
[8] Ye XL, Zhao Y, Zhang SY, et al. Study on the anti-inflammatory activity of camphor volatile oil in Meizhou[J]. Guangdong Chem Ind (广东化工), 2018, 45:49-50.
[9] Miyashita M, Sadzuka Y. Effect of linalool as a component of Humulus Lupulus on doxorubicin-induced antitumor activity[J]. Food Chem Toxicol, 2013, 53:174-179.
[10] Granger RE, Campbell EL, Johnston GA. (+)-And (-)-borneol:efficacious positive modulators of GABA action at human recombinant α1β2γ2L GABAA receptors[J]. Biochem Pharmacol, 2005, 69:1101-1111.
[11] Yang JQ, Yang NY. Antipruritic effects of essential oil of Cinnamomum camphora leaves[J]. Tianjin J Tradit Chin Med (天津中医药), 2019, 36:300-303.
[12] Chaw SM, Liu YC, Wu YW, et al. Stout camphor tree genome fills gaps in understanding of flowering plant genome evolution[J]. Nat Plants, 2019, 5:63-73.
[13] Jiang XM, Wu YF, Xiao FM, et al. Transcriptome analysis for leaves of five chemical types in Cinnamomum camphora[J]. Heredity (遗传), 2014, 36:58-68.
[14] Chen CH, Zheng YJ, Zhong YD, et al. Transcriptome analysis and identification of genes related to terpenoid biosynthesis in Cinnamomum camphora[J]. BMC Gen, 2018, 19:550.
[15] Cao XS, Wang J, Zhang YY, et al. Cloning and bioinformatic analysis of MK gene from Cinnamomum camphora[J]. Chin J Trop Crop (热带作物学报), 2017, 38:2302-2309.
[16] Zhang YY, Liu W, Cao XS, et al. Cloning and expression analysis of DXS gene in Cinnamomum camphora[J/OL]. Gen Appl Biol (基因组学与应用生物学), 2019[2019-04-24]. http://kns.cnki.net/kcms/detail/45.1369.Q.20190423.1645.002.html.
[17] Zheng H, Jing L, Yao N, et al. Cloning and expression analysis of 1-deoxy-D-xylulose-5-phosphate reductoisomerase gene (CcDXR1) in Cinnamomum camphora (L.) Presl[J]. Acta Pharm Sin (药学学报), 2016, 51:1494-1501.
[18] Jing L, Zheng H, Yao N, et al. Cloning and expression analysis of 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase gene in Cinnamomum camphora[J]. China J Chin Mater Med (中国中药杂志), 2016, 41:1578-1584.
[19] Zhang YY, Song L, Liu W, et al. Cloning and bioinformatic analysis of FPPS gene from Cinnamomum camphora[J]. Mol Plant Breed (分子植物育种), 2018, 16:6276-6281.
[20] Cao XS, Wang J, Zhang YY, et al. Cloning and bioinformatics analysis of GGPPS gene from Cinnamomum camphora[J]. Genom Appl Biol (基因组学与应用生物学), 2018, 37:3466-3472.
[21] Vranová E, Coman D, Gruissem W. Network analysis of the MVA and MEP pathways for isoprenoid synthesis[J]. Annu Rev Plant Biol, 2013, 64:463-476.
[22] Chen Y, Xie QD, Tang YQ, et al. Advances in synthetic metabolic pathways and rate-limiting enzymes of plant terpene[J]. Mol Plant Breed (分子植物育种), 2018, 16:2371-2379.
[23] Wang JD, Zhao YJ, Zhang YF, et al. The effects of TwHMGR overexpression on the biosynthesis of triptolide and celastrol in Tripterygium wilfordii[J]. Acta Pharm Sin (药学学报), 2018, 53:1225-1232.
[24] Wang Y, Jing F, Yu S, et al. Co-overexpression of the HMGR and FPS genes enhances artemisinin content in Artemisia Annua L.[J]. J Med Plants Res, 2011, 5:3396-3403.
[25] Kim Y, Kim JK, Kim YB, et al. Enhanced accumulation of phytosterol and triterpene in hairy root cultures of Platycodon grandiflorum by overexpression of Panax ginseng 3-hydroxy-3-methylglutaryl-coenzyme a reductase[J]. J Agric Food Chem, 2013, 61:1928-1934.
[26] Shi M, Luo X, Ju G, et al. Increased accumulation of the cardio-cerebrovascular disease treatment drug tanshinone in Salvia miltiorrhiza hairy roots by the enzymes 3-hydroxy-3-methylglutaryl CoA reductase and 1-deoxy-d-xylulose 5-phosphate reductoisomerase[J]. Funct Integr Gen, 2014, 14:603-615.
[27] Dai Z, Cui G, Zhou S, et al. Cloning and characterization of a novel 3-hydroxy-3-methylglutaryl coenzyme a reductase gene from Salvia Miltiorrhiza involved in diterpenoid tanshinone accumulation[J]. J Plant Physiol, 2011, 168:148-157.
[28] Wu YF, Xu HN, Song XC, et al. Comparative isolation methods for total RNA from different tissues and examination with RT-PCR in Cinnamomum camphora[J]. Jiangxi Forest Sci Technol (江西林业科技), 2013, 5:1-4.
[29] Wu YF, Xu HN, Jiang XM, et al. Comparative research on extraction methods for total RNA from leaves of five chemotypys of Cinnamomum camphora[J]. Chin Forest Sci Technol (林业科技开发), 2013, 27:75-79.
[30] Zhang LW, Li YP, Yao Y, et al. Cloning and expression analysis of Actin gene in Cinnamomum camphora[J]. J Cent South Univ Forest Technol (中南林业科技大学学报), 2015, 31:120-127.
[31] Huang LQ, Gao W, Zhou YJ. Application of synthetic biology to sustainable utilization of Chinese materia medica resources[J]. Acta Pharm Sin (药学学报), 2014, 49:37-43.
[32] Zhu CS, Chen MM, Liu Y, et al. Effect of over-expressing TwHMGR and TwDXR on the biosynthesis of terpenoids in Tripterygium wilfordii[J]. Chin J Agric Biotechol (农业生物技术学报), 2018, 26:940-948.
[33] Liu WZ, Zhao P. A preliminary study on the application of APGⅣ system in botany teaching[J]. High Edu Sci (高等理科教育), 2017, 4:104-109.
[34] Luo YJM. Study on the Characteristic Chinese Medicinal Materials of Jiangxi Province:Sarcandra glabra and Cinnamomum camphora (江西特色中药材草珊瑚和樟的研究)[D]. Beijing:China Academy of Chinese Medical Sciences, 2004.
[35] Wei L, Li XY, Liu SG, et al. Molecular cloning, sequence identification, and expression analysis of HMGR gene in Houttuynia cordata[J]. Chin Tradit Herb Drugs (中草药), 2017, 48:3815-3819.
[36] Li Q, Li B, Guo SX. Cloning and expression analysis of HMGR gene in Dendrobium nobile in response to mycorrhizal fungal inoculation[J]. Chin Pharm J (中国药学杂志), 2017, 52:1976-1982.
[37] Zhang XN, Guo J, Shen Y, et al. Cloning and expression analysis of a new 3-hydroxy-3-methylglutarylcoenzyme A reductase gene from Salvia miltiorrhiza (SmHMGR3)[J]. China J Chin Mater Med (中国中药杂志), 2012, 37:2378-2382.
[38] Xu YH, Yang X, Zhang Z, et al. Cloning and expression analysis of HMG-CoA reductase from Aquilaria sinensis (Lour.) Gilg[J]. Acta Pharm Sin (药学学报), 2013, 48:953-959.
[39] Cai KZ. Functional redundancy of gene[J]. J Ecol (生态学杂志), 2001, 20:61-64.
相关文献:
1.赵乐, 马利刚, 杨泽岸, 冯卫生, 郑晓珂.独行菜C4H基因克隆与表达分析[J]. 药学学报, 2017,52(5): 821-831
2.陈媞颖, 刘娟, 袁媛, 周骏辉, 黄璐琦.黄芩ARF基因家族生物信息学及表达分析[J]. 药学学报, 2017,52(11): 1770-1776
3.郑汉, 荆礼, 姚娜, 杨青山, 彭华胜, 申业, 黄璐琦.香樟1-脱氧-D-木酮糖-5-磷酸还原异构酶基因CcDXR1的克隆和表达分析[J]. 药学学报, 2016,51(9): 1494-1501