药学学报, 2020, 55(1): 160-167
引用本文:
谢德金, 叶友杰, 杨德明, 杨柯, 周成城, 陈凌艳, 荣俊冬, 郑郁善. 基于巴戟天转录组数据的R2R3-MYB转录因子的鉴定和分析[J]. 药学学报, 2020, 55(1): 160-167.
XIE De-jin, YE You-jie, YANG De-ming, YANG Ke, ZHOU Cheng-cheng, CHEN Ling-yan, RONG Jun-dong, ZHENG Yu-shan. Identification and analysis of the R2R3-MYB transcription factor based on a transcriptome database in Morinda officinalis[J]. Acta Pharmaceutica Sinica, 2020, 55(1): 160-167.

基于巴戟天转录组数据的R2R3-MYB转录因子的鉴定和分析
谢德金1, 叶友杰1, 杨德明1, 杨柯1, 周成城1, 陈凌艳2, 荣俊冬1, 郑郁善1,2
1. 福建农林大学林学院, 福建 福州 350002;
2. 福建农林大学园林学院, 福建 福州 350002
摘要:
为了挖掘参与巴戟天生长发育及次生代谢产物合成的MYB转录因子,本研究基于巴戟天根茎叶的转录组数据,筛选并鉴定巴戟天的R2R3-MYB转录因子,为以后通过遗传改良的手段调控巴戟天的代谢机制提供理论基础。根据巴戟天根茎叶的转录组数据,利用PFAM和plantTFDB等5个数据库,对预测的巴戟天R2R3-MYB转录因子进行鉴定,GO功能注释和分类、保守结构域分析、进化树比对分析和组织特异性表达差异分析。基于巴戟天的转录组数据共鉴定109个MYB转录因子,其中R2R3-MYB的数量为51个。亚细胞定位结果显示多数序列定位于细胞核,少部分位于细胞外基质。与分子功能、生物过程和细胞组分相关的GO terms的数量分别为112、76和239个。51个巴戟天R2R3-MYB转录因子中的R2-MYB和R3-MYB的保守基序分别为:-W-(X19)-W-(X19)-W-,-F-(X18)-W-(X18)-W-。通过与拟南芥R2R3-MYB转录因子的序列比对分析可知,除了S10、S19和S21亚家族没有分布,其他亚家族中都存在同源序列。RT-qPCR的结果验证了部分R2R3-MYB基因在3个组织差异性表达。获得的51个R2R3-MYB转录因子为进一步研究巴戟天MYB转录因子家族提供了一定的理论基础。
关键词:    巴戟天      MYB      转录组      功能注释      苯丙烷代谢     
Identification and analysis of the R2R3-MYB transcription factor based on a transcriptome database in Morinda officinalis
XIE De-jin1, YE You-jie1, YANG De-ming1, YANG Ke1, ZHOU Cheng-cheng1, CHEN Ling-yan2, RONG Jun-dong1, ZHENG Yu-shan1,2
1. College of forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
2. College of Landscape, Fujian Agriculture and Forestry University, Fuzhou 350002, China
Abstract:
In order to explore MYB transcription factors related to developmental processes and secondary metabolism in Morinda officinalis, we analyzed MoMYB expression based on transcriptome data from three tissues (root, stem and leaf). We used this analysis to provide a theoretical foundation for regulating the metabolism of M. officinalis. RNA-seq data along with the five databases including PFAM and plantTFDB and others were used to screen and classify MoMYB, including GO functional annotation and classification, subcellular localization, signal peptide prediction, conserved motif discovery, and comparative phylogenetic analysis. RT-qPCR was carried out to detect tissue-specific expression differences of MoMYB genes. According to transcriptome data, 109 MoMYB sequences were identified and divided into four classes, containing 51 sequences related to R2R3-MYB. Subcellular localization analysis indicated that a majority of sequences were located in nucleus. Blast2GO analysis showed that 109 MoMYB sequences were classified into three major functional ontologies including molecular function (112), biological processes (76) and cellular components (239). The R2-MYB conserved motif of 51 R2R3-MYB sequences possessed three significantly conserved tryptophan residues, whereas a phenylalanine replaced the first tryptophan in R3-MYB. The results of multiple sequence alignment and phylogenetic analysis revealed that the R2R3-MYB was distributed in all subgroups, apart from the S10, S19 and S21 subgroups. RT-qPCR indicated that several R2R3-MYB genes were differentially expressed among the three tissues, and this finding was consistent with transcriptome data. The 109 MoMYB sequences were annotated and divided into different classes, which lays the foundation for further study on MYB transcriptional factors in M. officinalis.
Key words:    Morinda officinalis    MYB    transcriptome    functional annotation    phenylpropanoid metabolism   
收稿日期: 2019-08-17
DOI: 10.16438/j.0513-4870.2019-0650
基金项目: 福建省科技重大专项资助(2004YZ02-05);福建省科技创新平台资助(2008Y2001).
通讯作者: 郑郁善,Tel:86-591-83856104,E-mail:zys1960@163.com
Email: zys1960@163.com
相关功能
PDF(2055KB) Free
打印本文
0
作者相关文章
谢德金  在本刊中的所有文章
叶友杰  在本刊中的所有文章
杨德明  在本刊中的所有文章
杨柯  在本刊中的所有文章
周成城  在本刊中的所有文章
陈凌艳  在本刊中的所有文章
荣俊冬  在本刊中的所有文章
郑郁善  在本刊中的所有文章

参考文献:
[1] Dubos C, Stracke R, Grotewold E, et al. MYB transcription factors in Arabidopsis[J]. Trends Plant Sci, 2010, 15:573-581.
[2] Stracke R, Werber M, Weisshaar B. The R2R3-MYB gene family in Arabidopsis thaliana[J]. Curr Opin Plant Biol, 2001, 4:447-456.
[3] Chen YH, Yang XY, He K, et al. The MYB transcription factor superfamily of Arabidopsis:expression analysis and phylogenetic comparison with the rice MYB family[J]. Plant Mol Biol, 2006, 60:107-124.
[4] Wilkins O, Nahal H, Foong J, et al. Expansion and diversification of the Populus R2R3-MYB family of transcription factors[J]. Plant Physiol, 2009, 149:981-993.
[5] Matus JT, Aquea F, Arce-Johnson P. Analysis of the grape MYB R2R3 subfamily reveals expanded wine quality-related clades and conserved gene structure organization across Vitis and Arabidopsis genomes[J]. BMC Plant Biol, 2008, 8:83-97.
[6] Du H, Feng B, Yang S, et al. The R2R3-MYB transcription factor gene family in maize[J]. PLoS One, 2012, 7:e37463.
[7] Liu J, Osbourn A, Ma P. MYB transcription factors as regulators of phenylpropanoid metabolism in plants[J]. Mol Plant, 2015, 8:689-708.
[8] Stracke R, Ishihara H, Huep G, et al. Differential regulation of closely related R2R3-MYB transcription factors controls flavonol accumulation in different parts of the Arabidopsis thaliana seedling[J]. Plant J, 2007, 50:660-677.
[9] Heppel SC, Takos AM, Schellmann S, et al. Identification of key amino acids for the evolution of promoter target specificity of anthocyanin and proanthocyanidin regulating MYB factors[J]. Plant Mol Biol, 2013, 82:457-471.
[10] Zhong RQ, Lee CH, Zhou JL, et al. A battery of transcription factors involved in the regulation of secondary cell wall biosynthesis in Arabidopsis[J]. Plant Cell, 2008, 20:2763-2782.
[11] Zhou J, Lee C, Zhong R, et al. MYB58 and MYB63 are transcriptional activators of the lignin biosynthetic pathway during secondary cell wall formation in Arabidopsis[J]. Plant Cell, 2009, 21:248-266.
[12] Abe H, Urao T, Ito T, et al. Arabidopsis AtMYC2(bHLH) and AtMYB2(MYB) function as transcriptional activators in abscisic acid signaling[J]. Plant Cell, 2003, 15:63-78.
[13] Denekamp M, Smeekens SC. Integration of wounding and osmotic stress signals determines the expression of the AtMYB102 transcription factor gene[J]. Plant Physiol, 2003, 132:1415-1423.
[14] Cominelli E, Galbiati M, Vavasseur A, et al. A guard-cell-specific MYB transcription factor regulates stomatal movements and plant drought tolerance[J]. Curr Biol, 2005, 15:1196-1200.
[15] Seo PJ, Xiang F, Qiao M, et al. The MYB96 transcription factor mediates abscisic acid signaling during drought stress response in Arabidopsis[J]. Plant Physiol, 2009, 151:275-289.
[16] Seo PJ, Lee SB, Suh MC, et al. The MYB96 transcription factor regulates cuticular wax biosynthesis under drought conditions in Arabidopsis[J]. Plant Cell, 2011, 23:1138-1152.
[17] Jin H, Cominelli E, Bailey P, et al. Transcriptional repression by AtMYB4 controls production of UV-protecting sunscreens in Arabidopsis[J]. EMBO J, 2000, 19:6150-6161.
[18] Zhang B, Hülskamp M. Evolutionary analysis of MBW function by phenotypic rescue in Arabidopsis thaliana[J]. Front Plant Sci, 2019, 10:375.
[19] Grotewold E, Sainz MB, Tagliani L, et al. Identification of the residues in the Myb domain of maize C1 that specify the interaction with the bHLH cofactor R[J]. Proc Natl Acad Sci U S A, 2000, 97:13579-13584.
[20] Zimmermann IM, Heim MA, Weisshaar B, et al. Comprehensive identification of Arabidopsis thaliana MYB transcription factors interacting with R/B-like BHLH proteins[J]. Plant J, 2004, 40:22-34.
[21] Allen RS, Li J, Stahle MI, et al. Genetic analysis reveals functional redundancy and the major target genes of the Arabidopsis miR159 family[J]. Proc Natl Acad Sci U S A, 2007, 104:16371-16376.
[22] Han Y, van der Heijden R, Lefeber AWM, et al. Biosynthesis of anthraquinones in cell cultures of Cinchona ‘Robusta’ proceeds via the methylerythritol 4-phosphate pathway[J]. Phytochemistry, 2002, 59:45-55.
[23] Han YS, Van der Heijden R, Verpoorte R, et al. Biosynthesis of anthraquinones in cell cultures of the Rubiaceae[J]. Plant Cell Tiss Org Culture, 2001, 67:201-220.
[24] Liu W. Study on Functional Differentiation of AaDXS Gene Family and Molecular Mechanism of Low Temperature Improving Artemisinin Production in Artemisim annua L. (青蒿DXS基因家族功能分化及低温促进青蒿素合成的分子机制研究)[D]. Chongqing:Chongqing University. 2016.
[25] Yan L, Wang CP, Chen JW, et al. Analysis of MYB transcription factor family based on transcriptome sequencing in Lycium ruthenicum Murr[J]. Sci Agric Sin (中国农业科学), 2017, 50:3991-4002.
[26] Zuluaga D, Gonzali SLE, Pucciariello C, et al. Arabidopsis thaliana MYB75/PAP1 transcription factor induces anthocyanin production in transgenic tomato plants[J]. Funct Plant Biol, 2008, 35:606-618.
[27] Mehrtens F, Kranz H, Bednarek P, et al. The Arabidopsis transcription factor MYB12 is a flavonol-specific regulator of phenylpropanoid biosynthesis[J]. Plant Physiol, 2005, 138:1083-1096.
[28] Petroni K, Falasca G, Calvenzani V, et al. The AtMYB11 gene from Arabidopsis is expressed in meristematic cells and modulates growth in planta and organogenesis in vitro[J]. J Exp Bot, 2008, 59:1201-1213.
[29] Zhang SS. Preliminary Study on the MYB111 and MYB148 Transcription Factors Regulating the Phenylpropanoid Metabolism in Maize (玉米MYB111和MYB148转录因子调控苯丙烷代谢途径的初步研究)[D]. Chengdu:Sichuan Agricultural University, 2015.
[30] Jeff V, Cahid C, Cazzonelli CI. A spontaneous dominant-negative mutation within a 35S::AtMYB90 transgene inhibits flower pigment production in tobacco[J]. PLoS One, 2010, 5:e9917.
[31] Hou ZP, Wang SP, Wei SD, et al. Anthocyanin biosynthesis and regulation in plants[J]. Guihaia (广西植物), 2017, 37:1603-1613.
[32] Kagale S, Rozwadowski K. EAR motif-mediated transcriptional repression in plants:an underlying mechanism for epigenetic regulation of gene expression[J]. Epigenetics, 2011, 6:141-146.
[33] Zhou M, Zhang K, Sun Z, et al. LNK1 and LNK2 co-repressors interact with the MYB3 transcription factor in phenylpropanoid biosynthesis[J]. Plant Physiol, 2017, 174:1348-1358.
[34] Jin H, Cominelli E, Bailey P, et al. Transcriptional repression by AtMYB4 controls production of UV-protecting sunscreens in Arabidopsis[J]. EMBO J, 2000, 19:6150-6161.
[35] Fornale S, Lopez E, Salazar-Henao J, et al. AtMYB7, a new player in the regulation of UV-sunscreens in Arabidopsis thaliana[J]. Plant Cell Physiol, 2013, 55:507-516.
[36] Preston J, Wheeler JJ, Li S, et al. AtMYB32 is required for normal pollen development in Arabidopsis thaliana[J]. Plant J, 2010, 40:979-995.
[37] Ma D, Constabel CP. MYB repressors as regulators of phenylpropanoid metabolism in plants[J]. Trends Plant Sci, 2019, 24:275-289.
[38] Feng C, Andreasson E, Maslak A, et al. Arabidopsis MYB68 in development and responses to environmental cues[J]. Plant Sci, 2004, 167:1099-1107.
[39] Zhong RQ, Richardson EA, Ye ZH. The MYB46 transcription factor is a direct target of SND1 and regulates secondary wall biosynthesis in Arabidopsis[J]. Plant Cell, 2007, 19:2776-2792.
[40] Liang YK, Dubos C, Dodd IC, et al. At MYB61, an R2R3-MYB transcription factor controlling stomatal aperture in Arabidopsis thaliana[J]. Curr Biol, 2005, 15:1201-1206.
[41] Newman LJ,Perazza DE, Lusanda J, et al. Involvement of the R2R3-MYB, AtMYB61, in the ectopic lignification and dark-photomorphogenic components of the det3 mutant phenotype[J]. Plant J Cell Mol Biol, 2010, 37:239-250.
[42] Penfield S, Meissner RC, Shoue DA, et al. MYB61 is required for mucilage deposition and extrusion in the Arabidopsis seed coat[J]. Plant Cell, 2001, 13:2777-2791.