药学学报, 2020, 55(2): 189-194
引用本文:
王凯, 柳星峰, 李平平. 胰岛素抵抗状态下肝脏脂质合成增加的研究进展[J]. 药学学报, 2020, 55(2): 189-194.
WANG Kai, LIU Xing-feng, LI Ping-ping. Advances in molecular mechanisms for enhanced hepatic lipogenesis in insulin resistance[J]. Acta Pharmaceutica Sinica, 2020, 55(2): 189-194.

胰岛素抵抗状态下肝脏脂质合成增加的研究进展
王凯, 柳星峰, 李平平
中国医学科学院、北京协和医学院药物研究所, 天然药物活性物质与功能国家重点实验室, 北京协和医学院糖尿病研究中心, 北京100050
摘要:
肝脏选择性胰岛素抵抗是胰岛素抵抗状态下,胰岛素在肝脏不能抑制糖异生进而导致葡萄糖产生增加,但同时脂质合成过程保持亢进的状态。正是这种亢进状态导致2型糖尿病患者除高血糖外还伴随高血脂。本文通过固醇调节因子结合蛋白1c(SREBP1c)、哺乳动物雷帕霉素靶复合体1(mTORC1)、内质网应激、FOXO1、脂质合成底物等促进肝脏脂质合成的相关研究,综述胰岛素抵抗状态下肝脏脂质合成增加的分子机制研究进展。
关键词:    肝脏      胰岛素抵抗      脂质从头合成      脂代谢      2型糖尿病     
Advances in molecular mechanisms for enhanced hepatic lipogenesis in insulin resistance
WANG Kai, LIU Xing-feng, LI Ping-ping
Diabetes Research Center of Chinese Academy of Medical Sciences, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
Abstract:
Hepatic selective insulin resistance refers to that insulin fails to suppress hepatic glucose production but continues to promote hepatic lipogenesis in insulin resistance. Therefore, type 2 diabetes mellitus is characterized with dyslipidemia apart from hyperglycemia. This review highlights the roles and molecular mechanisms of the key hepatic lipogenesis factors such as sterol regulatory factor binding protein 1c (SREBP1c), mammalian rapamycin target complex 1 (mTORC1), endoplasmic reticulum stress (ER stress), FoxO1, lipid synthesis substrate, etc.
Key words:    liver    insulin resistance    de novo lipogenesis    lipid metabolism    type 2 diabetes   
收稿日期: 2019-09-04
DOI: 10.16438/j.0513-4870.2019-0718
基金项目: 中国医学科学院医学与健康科技创新工程(2016-I2M-4-001);中国医学科学院中央级公益性科研院所基本科研业务费(2017PT31046);国家自然科学基金项目(81622010,81770800).
通讯作者: 李平平,Tel/Fax:86-10-83161187,E-mail:lipp@imm.ac.cn
Email: lipp@imm.ac.cn
相关功能
PDF(407KB) Free
打印本文
0
作者相关文章
王凯  在本刊中的所有文章
柳星峰  在本刊中的所有文章
李平平  在本刊中的所有文章

参考文献:
[1] Guilherme A, Henriques F, Bedard AH, et al. Molecular pathways linking adipose innervation to insulin action in obesity and diabetes mellitus[J]. Nat Rev Endocrinol, 2019, 15:207-225.
[2] Yang Q, Vijayakumar A, Kahn BB. Metabolites as regulators of insulin sensitivity and metabolism[J]. Nat Rev Mol Cell Biol, 2018, 19:654-672.
[3] Sanders FWB, Griffin JL. De novo lipogenesis in the liver in health and disease:more than just a shunting yard for glucose[J]. Biol Rev, 2016, 91:452-468.
[4] Choi SH, Ginsberg HN. Increased very low density lipoprotein (VLDL) secretion, hepatic steatosis, and insulin resistance[J]. Trends Endocrinol Metab, 2011, 22:353-363.
[5] Bjorntorp P, Sjostrom L. Carbohydrate storage in man:speculations and some quantitative considerations[J]. Metab Clin Exp, 1978, 27:1853-1865.
[6] Guan D, Xiong Y, Borck PC, et al. Diet-induced circadian enhancer remodeling synchronizes opposing hepatic lipid metabolic processes[J]. Cell, 2018, 174:831-42. e12.
[7] Trayhurn P, Wusteman MC. Lipogenesis in genetically diabetic (db/db) mice:developmental changes in brown adipose tissue, white adipose tissue and the liver[J]. Biochim Biophys Acta, 1990, 1047:168-174.
[8] Wiegman CH, Bandsma RH, Ouwens M, et al. Hepatic VLDL production in ob/ob mice is not stimulated by massive de novo lipogenesis but is less sensitive to the suppressive effects of insulin[J]. Diabetes, 2003, 52:1081-1089.
[9] Donnelly KL, Smith CI, Schwarzenberg SJ, et al. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease[J]. J Clin Investig, 2005, 115:1343-1351.
[10] Baothman OA,Zamzami MA, Taher I, et al. The role of gut microbiota in the development of obesity and diabetes[J]. Lipids Health Dis, 2016, 15:108.
[11] Wang Q, Jiang L, Wang J, et al. Abrogation of hepatic ATP-citrate lyase protects against fatty liver and ameliorates hyperglycemia in leptin receptor-deficient mice[J]. Hepatology, 2009, 49:1166-1175.
[12] Iizuka K, Miller B, Uyeda K. Deficiency of carbohydrate-activated transcription factor ChREBP prevents obesity and improves plasma glucose control in leptin-deficient (ob/ob) mice[J]. Am J Physiol Endocrinol Metab, 2006, 291:E358-364.
[13] Eissing L, Scherer T, Todter K, et al. De novo lipogenesis in human fat and liver is linked to ChREBP-beta and metabolic health[J]. Nat Commun, 2013, 4:1528.
[14] Fon Tacer K, Rozman D. Nonalcoholic Fatty liver disease:focus on lipoprotein and lipid deregulation[J]. J Lipids, 2011, 2011:783976.
[15] Ono H, Shimano H, Katagiri H, et al. Hepatic Akt activation induces marked hypoglycemia, hepatomegaly, and hypertriglyceridemia with sterol regulatory element binding protein involvement[J]. Diabetes, 2003, 52:2905-2913.
[16] Horie Y, Suzuki A, Kataoka E, et al. Hepatocyte-specific Pten deficiency results in steatohepatitis and hepatocellular carcinomas[J]. J Clin Investig, 2004, 113:1774-1783.
[17] Leavens KF, Easton RM, Shulman GI, et al. Akt2 is required for hepatic lipid accumulation in models of insulin resistance[J]. Cell Metab, 2009, 10:405-418.
[18] Biddinger SB, Hernandez-Ono A, Rask-Madsen C, et al. Hepatic insulin resistance is sufficient to produce dyslipidemia and susceptibility to atherosclerosis[J]. Cell Metab, 2008, 7:125-134.
[19] Horton JD, Goldstein JL, Brown MS. SREBPs:activators of the complete program of cholesterol and fatty acid synthesis in the liver[J]. J Clin Investig, 2002, 109:1125-1131.
[20] Moon YA, Liang G, Xie X, et al. The Scap/SREBP pathway is essential for developing diabetic fatty liver and carbohydrate-induced hypertriglyceridemia in animals[J]. Cell Metab, 2012, 15:240-246.
[21] Shimomura I, Bashmakov Y, Horton JD. Increased levels of nuclear SREBP-1c associated with fatty livers in two mouse models of diabetes mellitus[J]. J Biol Chem, 1999, 274:30028-30032.
[22] Li S, Brown MS, Goldstein JL. Bifurcation of insulin signaling pathway in rat liver:mTORC1 required for stimulation of lipogenesis, but not inhibition of gluconeogenesis[J]. Proc Natl Acad Sci U S A, 2010, 107:3441-3446.
[23] Porstmann T, Santos CR, Griffiths B, et al. SREBP activity is regulated by mTORC1 and contributes to Akt-dependent cell growth[J]. Cell Metab, 2008, 8:224-236.
[24] Tang Y, Wallace M, Sanchez-Gurmaches J, et al. Adipose tissue mTORC2 regulates ChREBP-driven de novo lipogenesis and hepatic glucose metabolism[J]. Nat Commun, 2016, 7:11365.
[25] Wan M, Leavens KF, Saleh D, et al. Postprandial hepatic lipid metabolism requires signaling through Akt2 independent of the transcription factors FoxA2, FoxO1, and SREBP1c[J]. Cell Metab, 2011, 14:516-527.
[26] Yecies JL, Zhang HH, Menon S, et al. Akt stimulates hepatic SREBP1c and lipogenesis through parallel mTORC1-dependent and independent pathways[J]. Cell Metab, 2011, 14:21-32.
[27] Titchenell PM, Quinn WJ, Lu M, et al. Direct hepatocyte insulin signaling is required for lipogenesis but is dispensable for the suppression of glucose production[J]. Cell Metab, 2016, 23:1154-1166.
[28] Tremblay F, Jacques H, Marette A. Modulation of insulin action by dietary proteins and amino acids:role of the mammalian target of rapamycin nutrient sensing pathway[J]. Curr Opin Clin Nutr Metab Care, 2005, 8:457-462.
[29] Um SH, D'Alessio D, Thomas G. Nutrient overload, insulin resistance, and ribosomal protein S6 kinase 1, S6K1[J]. Cell Metab, 2006, 3:393-402.
[30] Newgard CB, An J, Bain JR, et al. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance[J]. Cell Metab, 2009, 9:311-326.
[31] McCormack SE, Shaham O,McCarthy MA, et al. Circulating branched-chain amino acid concentrations are associated with obesity and future insulin resistance in children and adolescents[J]. Pediatr Obes, 2013, 8:52-61.
[32] Badoud F, Lam KP, DiBattista A, et al. Serum and adipose tissue amino acid homeostasis in the metabolically healthy obese[J]. J Proteome Res, 2014, 13:3455-3466.
[33] Hara K, Yonezawa K, Weng QP, et al. Amino acid sufficiency and mTOR regulate p70 S6 kinase and eIF-4E BP1 through a common effector mechanism[J]. J Biol Chem, 1998, 273:14484-14494.
[34] Winnay JN, Kahn CR. PI 3-kinase regulatory subunits as regulators of the unfolded protein response[J]. Methods Enzymol, 2011, 490:147-158.
[35] Boden G, Cheung P, Salehi S, et al. Insulin regulates the unfolded protein response in human adipose tissue[J]. Diabetes, 2014, 63:912-922.
[36] Denis RG, Arruda AP, Romanatto T, et al. TNF-alpha transiently induces endoplasmic reticulum stress and an incomplete unfolded protein response in the hypothalamus[J]. Neuroscience, 2010, 170:1035-1044.
[37] Boden G. Endoplasmic reticulum stress:another link between obesity and insulin resistance/inflammation?[J]. Diabetes, 2009, 58:518-519.
[38] Kammoun HL, Chabanon H, Hainault I, et al. GRP78 expression inhibits insulin and ER stress-induced SREBP-1c activation and reduces hepatic steatosis in mice[J]. J Clin Investig, 2009, 119:1201-1215.
[39] Ferre P, Foufelle F. Hepatic steatosis:a role for de novo lipogenesis and the transcription factor SREBP-1c[J]. Diabetes Obes Metab, 2010, 12 Suppl 2:83-92.
[40] Gross DN, Wan M, Birnbaum MJ. The role of FOXO in the regulation of metabolism[J]. Curr Diabetes Rep, 2009, 9:208-214.
[41] Rena G, Guo S, Cichy SC, et al. Phosphorylation of the transcription factor forkhead family member FKHR by protein kinase B[J]. J Biol Chem, 1999, 274:17179-17183.
[42] Rena G, Woods YL, Prescott AR, et al. Two novel phosphorylation sites on FKHR that are critical for its nuclear exclusion[J]. EMBO J, 2002, 21:2263-2271.
[43] Langlet F, Haeusler RA, Linden D, et al. Selective inhibition of FOXO1 activator/repressor balance modulates hepatic glucose handling[J]. Cell, 2017, 171:824-35. e18.
[44] Qu S, Altomonte J, Perdomo G, et al. Aberrant Forkhead box O1 function is associated with impaired hepatic metabolism[J]. Endocrinology, 2006, 147:5641-5652.
[45] Lin J, Yang R, Tarr PT, et al. Hyperlipidemic effects of dietary saturated fats mediated through PGC-1beta coactivation of SREBP[J]. Cell, 2005, 120:261-273.
相关文献:
1.王亚男, 张晓琳, 尹震, 田金英, 李雪晨, 叶菲.双环醇对2型糖尿病KKAy小鼠治疗作用的实验研究[J]. 药学学报, 2019,54(6): 1041-1047
2.曾平燕, 张宇, 芮雯, 吴霞, 冯毅凡.2型糖尿病模型大鼠血浆磷脂的UPLC-Q-TOF/MS分析[J]. 药学学报, 2015,50(7): 882-886
3.徐彤宇, 王文飞, 徐鹏飞, 袁清艳, 刘双庆, 张童, 任桂萍, 李德山.成纤维细胞生长因子21对胰岛素抵抗缓解作用机制的研究[J]. 药学学报, 2015,50(9): 1101-1106
4.李颖萌, 范雪梅, 王义明, 梁琼麟, 罗国安.葛根芩连汤对2型糖尿病大鼠的治疗作用及其机制探讨[J]. 药学学报, 2013,48(9): 1415-1421
5.陈丽华;李卫东.脂联素与2型糖尿病和心血管疾病[J]. 药学学报, 2006,41(11): 1034-1037
6.孙素娟;申竹芳;陈跃腾;唐玲;丁世英;谢明智.结合亚油酸对胰岛素抵抗模型MSG肥胖小鼠的影响结合亚油酸对胰岛素抵抗模型MSG肥胖小鼠的影响[J]. 药学学报, 2003,38(12): 904-907