药学学报, 2020, 55(2): 226-234
引用本文:
王冰, 刘宏锐, 陈芳, 全应军, 相小强. 口腔黏膜给药系统的药物动力学研究进展[J]. 药学学报, 2020, 55(2): 226-234.
WANG Bing, LIU Hong-rui, CHEN Fang, QUAN Ying-jun, XIANG Xiao-qiang. Progress in pharmacokinetics of oral transmucosal drug delivery systems[J]. Acta Pharmaceutica Sinica, 2020, 55(2): 226-234.

口腔黏膜给药系统的药物动力学研究进展
王冰1, 刘宏锐1, 陈芳1, 全应军2, 相小强3
1. 中国医药工业研究总院药物制剂国家工程研究中心, 上海201203;
2. 复旦大学附属浦东医院, 上海201300;
3. 复旦大学药学院, 上海 201203
摘要:
口腔黏膜给药(oral transmucosal drug delivery)指药物经过口腔黏膜吸收进入体循环而发挥药效,具有生物利用度高、起效快等优势。本文介绍了口腔黏膜的生理特点,详细分析了影响口腔黏膜给药系统药物动力学性质的因素,如口腔生理屏障、不同给药部位、药物理化性质、剂型因素和处方因素,阐述了体外渗透性、在体口腔吸收、体内药物动力学以及生理药代动力学模型等研究在口腔黏膜给药系统药物动力学研究中的应用,为口腔黏膜给药系统开发提供方法和借鉴。
关键词:    口腔黏膜吸收      药物传递系统      药物动力学      渗透性      剂型     
Progress in pharmacokinetics of oral transmucosal drug delivery systems
WANG Bing1, LIU Hong-rui1, CHEN Fang1, QUAN Ying-jun2, XIANG Xiao-qiang3
1. National Pharmaceutical Engineering Research Center, China State Institute of Pharmaceutical Industry, Shanghai 201203, China;
2. Fudan University Pudong Medical Center, Shanghai 201300, China;
3. School of Pharmacy, Fudan University, Shanghai 201203, China
Abstract:
Oral transmucosal drug delivery can be defined as the administration of drug through the oral mucosa to achieve systemic effects. It has the advantages of high bioavailability and rapid drug response. In this review, we introduce the physiology of oral mucosa, and analyze the factors affecting the pharmacokinetic properties of oral transmucosal drug delivery in detail, such as physiological barriers, different administration sites, physicochemical properties of drugs, dosage forms, and formulation strategies. In addition, we describe the methods to evaluate the pharmacokinetic properties of this delivery systems, including in vitro permeability studies, buccal absorption studies, in vivo pharmacokinetic studies and physiologically based pharmacokinetics (PBPK) modeling, which provide methods and reference for the development of oral transmucosal drug delivery systems.
Key words:    oral mucosal absorption    drug delivery system    pharmacokinetics    permeability    dosage form   
收稿日期: 2019-07-25
DOI: 10.16438/j.0513-4870.2019-0598
基金项目: 国家自然科学基金资助项目(81473409);上海市科委研发平台建设专项(18DZ2290500);复旦大学附属浦东医院-复旦大学药学院战略合作融合基金(RHJJ2017-05).
通讯作者: 相小强,Tel/Fax:86-21-51980176,E-mail:xiangxq@fudan.edu.cn
Email: xiangxq@fudan.edu.cn
相关功能
PDF(490KB) Free
打印本文
0
作者相关文章
王冰  在本刊中的所有文章
刘宏锐  在本刊中的所有文章
陈芳  在本刊中的所有文章
全应军  在本刊中的所有文章
相小强  在本刊中的所有文章

参考文献:
[1] Sattar M, Sayed OM, Lane ME. Oral transmucosal drug delivery-current status and future prospects[J]. Int J Pharm, 2014, 471:498-506.
[2] Li YQ, Huang SW. Research progress in the absorption mechanisms of mouth mucosal drug delivery system[J]. Chin New Drugs J (中国新药杂志), 2012, 21:512-517.
[3] Brandl M, Bauer-Brandl A. Oromucosal drug delivery:trends in in-vitro biopharmaceutical assessment of new chemical entities and formulations[J]. Eur J Pharm Sci, 2019, 128:112-117.
[4] Salamat-Miller N, Chittchang M, Johnston TP. The use of mucoadhesive polymers in buccal drug delivery[J]. Adv Drug Deliv Rev, 2005, 57:1666-1691.
[5] Lam JK, Xu Y, Worsley A, et al. Oral transmucosal drug delivery for pediatric use[J]. Adv Drug Deliv Rev, 2014, 73:50-62.
[6] Duggan S, Cummins W, O' Donovan D, et al. Thiolated polymers as mucoadhesive drug delivery systems[J]. Eur J Pharm Sci, 2017, 100:64-78.
[7] Zhong BN, Sheng BD, Shen CY, et al. Research progress of the oral mucosal delivery of biomacromolecules[J]. Chin New Drugs J (中国新药杂志), 2018, 27:2011-2016.
[8] Silva BM, Borges AF, Silva C, et al. Mucoadhesive oral films:the potential for unmet needs[J]. Int J Pharm, 2015, 494:537-551.
[9] Ramesan S, Rezk AR, Yeo LY. High frequency acoustic permeabilisation of drugs through tissue for localised mucosal delivery[J]. Lab Chip, 2018; 18:3272-3284.
[10] Ling RB, Chen QJ, Qiu HT, et al. Advances in research on oral mucosadhesive drug delivery system[J]. Prog Pharm Sci (药学进展), 2018, 42:905-912.
[11] Lai KL, Fang Y, Han H, et al. Orally-dissolving film for sublingual and buccal delivery of ropinirole[J]. Colloids Surf B Biointerfaces, 2018, 163:9-18.
[12] Gerrits M, de Greef R, Peeters P. Effect of absorption site on the pharmacokinetics of sublingual asenapine in healthy male subjects[J]. Biopharm Drug Dispos, 2010, 31:351-357.
[13] Loprete L, Leuratti C, Frangione V, et al. Pharmacokinetics of a novel sildenafil orodispersible film administered by the supralingual and the sublingual route to healthy men[J]. Clin Drug Investig, 2018, 38:765-772.
[14] Bashyal S, Seo JE, Keum T, et al. Facilitated permeation of insulin across TR146 cells by cholic acid derivatives-modified elastic bilosomes[J]. Int J Nanomed, 2018, 13:5173-5186.
[15] Iyire A, Alaayedi M, Mohammed AR. Pre-formulation and systematic evaluation of amino acid assisted permeability of insulin across in vitro buccal cell layers[J]. Sci Rep, 2016, 6:32498.
[16] Morales JO, Brayden DJ. Buccal delivery of small molecules and biologics:of mucoadhesive polymers, films, and nanoparticles[J]. Curr Opin Pharmacol, 2017, 36:22-28.
[17] Mouftah S, Abdel-Mottaleb MMA, Lamprecht A. Buccal delivery of low molecular weight heparin by cationic polymethacrylate nanoparticles[J]. Int J Pharm, 2016, 515:565-574.
[18] Masek J, Lubasova D, Lukac R, et al. Multi-layered nanofibrous mucoadhesive films for buccal and sublingual administration of drug-delivery and vaccination nanoparticles-important step towards effective mucosal vaccines[J]. J Control Release, 2017, 249:183-195.
[19] Al-Nemrawi NK, Alsharif SSM, Alzoubi KH, et al. Preparation and characterization of insulin chitosan-nanoparticles loaded in buccal films[J]. Pharm Dev Technol, 2019, 24:1-26.
[20] Patel VF, Liu F, Brown MB. Modeling the oral cavity:in vitro and in vivo evaluations of buccal drug delivery systems[J]. J Control Release, 2012, 161:746-756.
[21] Khan S, Trivedi V, Boateng J. Functional physico-chemical, ex vivo permeation and cell viability characterization of omeprazole loaded buccal films for paediatric drug delivery[J]. Int J Pharm, 2016, 500:217-226.
[22] Londhe V, Shirsat R. Formulation and characterization of fast-dissolving sublingual film of iloperidone using box-behnken design for enhancement of oral bioavailability[J]. AAPS PharmSciTech, 2018, 19:1392-1400.
[23] Chen J, Duan H, Pan H, et al. Two types of core/shell fibers based on carboxymethyl chitosan and sodium carboxymethyl cellulose with self-assembled liposome for buccal delivery of carvedilol across TR146 cell culture and porcine buccal mucosa[J]. Int J Biol Macromol, 2019, 128:700-709.
[24] Sander C, Nielsen HM, Jacobsen J. Buccal delivery of metformin:TR146 cell culture model evaluating the use of bioadhesive chitosan discs for drug permeability enhancement[J]. Int J Pharm, 2013, 458:254-261.
[25] Products:EpiOralTM & EpiGingival[EB/OL]. Ashland:MatTek Corporation, 2019[2019-07-25]. https://www.mattek.com/products/epioral-epigingival/.
[26] Morales JO, Huang S, Williams RO, et al. Films loaded with insulin-coated nanoparticles (ICNP) as potential platforms for peptide buccal delivery[J]. Colloids Surf B Biointerfaces, 2014, 122:38-45.
[27] Boateng JS, Mitchell JC, Pawar H, et al. Functional characterisation and permeation studies of lyophilised thiolated chitosan xerogels for buccal delivery of insulin[J]. Protein Pept Lett, 2014, 21:1163-1175.
[28] Giovino C, Ayensu I, Tetteh J, et al. An integrated buccal delivery system combining chitosan films impregnated with peptide loaded PEG-b-PLA nanoparticles[J]. Colloids Surf B Biointerfaces, 2013, 112:9-15.
[29] Bibi HA, Holm R, Bauer-Brandl A. Use of permeapad (R) for prediction of buccal absorption:a comparison to in vitro, ex vivo and in vivo method[J]. Eur J Pharm Sci, 2016, 93:399-404.
[30] Beckett AH, Triggs EJ. Buccal absorption of basic drugs and its application as an in vivo model of passive drug transfer through lipid membranes[J]. J Pharm Pharmacol, 1967, 19:Suppl:31S-41S.
[31] Koland M, Charyulu RN, Vijayanarayana K, et al. In vitro and in vivo evaluation of chitosan buccal films of ondansetron hydrochloride[J]. Int J Pharm Investig, 2011, 1:164-171.
[32] Rachid O, Rawas-Qalaji M, Simons KJ. Epinephrine in anaphylaxis:preclinical study of pharmacokinetics after sublingual administration of taste-masked tablets for potential pediatric use[J]. Pharmaceutics, 2018. DOI:10.3390/pharmaceutics10010024.
[33] Zaman M, Hanif M, Shaheryar ZA. Development of tizanidine HCl-meloxicam loaded mucoadhesive buccal films:In-vitro and in-vivo evaluation[J]. PLoS One, 2018, 13:e0194410.
[34] Chen F, Yang LL, Zhou Z, et al. Preparation and in vitro/in vivo evaluation of asenapine maleate sublingual films[J]. Chin J Pharm (中国医药工业杂志), 2015, 46:843-849, 855.
[35] Meng-Lund E, Jacobsen J, Mullertz A, et al. Buccal absorption of diazepam is improved when administered in bioadhesive tablets -an in vivo study in conscious Gottingen mini-pigs[J]. Int J Pharm, 2016, 515:125-131.
[36] Sadar MJ, Knych HK, Drazenovich TL, et al. Pharmacokinetics of buprenorphine after intravenous and oral transmucosal admi-nistration in guinea pigs (Cavia porcellus)[J]. Am J Vet Res, 2018, 79:260-266.
[37] Sekhar KC, Naidu KV, Vishnu YV, et al. Transbuccal delivery of chlorpheniramine maleate from mucoadhesive buccal patches[J]. Drug Deliv, 2008, 15:185-191.
[38] Darwish M, Kirby M, Robertson P, et al. Absolute and relative bioavailability of fentanyl buccal tablet and oral transmucosal fentanyl citrate[J]. J Clin Pharmacol, 2007, 47:343-350.
[39] Vasisht N, Gever LN, Tagarro I, et al. Evaluation of the single- and multiple-dose pharmacokinetics of fentanyl buccal soluble film in normal healthy volunteers[J]. J Clin Pharmacol, 2010, 50:785-791.
[40] McIntyre J, Robertson S, Norris E, et al. Safety and efficacy of buccal midazolam versus rectal diazepam for emergency treatment of seizures in children:a randomised controlled trial[J]. Lancet, 2005, 366:205-210.
[41] Hagen NA,Moulin DE,Brasher PM, et al. A formal feasibility study of sublingual methadone for breakthrough cancer pain[J]. Palliat Med, 2010, 24:696-706.
[42] Goorhuis JF, Scheenstra R, Peeters PM, et al. Buccal vs nasogastric tube administration of tacrolimus after pediatric liver transplantation[J]. Pediatr Transpl, 2006, 10:74-77.
[43] Liu HR, Chen F, Xiang XQ, et al. Application of physiologically based pharmacokinetic modeling in pharmaceutic[J]. Chin J Pharm (中国医药工业杂志), 2019, 50:383-391.
[44] Xia B, Yang Z, Zhou H, et al. Development of a novel oral cavity compartmental absorption and transit model for sublingual administration:illustration with zolpidem[J]. AAPS J, 2015, 17:631-642.
[45] Kalluri HV, Zhang H, Caritis SN, et al. A physiologically based pharmacokinetic modelling approach to predict buprenorphine pharmacokinetics following intravenous and sublingual administration[J]. Br J Clin Pharmacol, 2017, 83:2458-2473.
[46] Yang TZ, Chen DB, Wang LR, et al. Effect of enzymes in buccal mucosa on insulin buccal absorption[J]. Acta Pharm Sin (药学学报), 2001, 36:932-936.