药学学报, 2020, 55(2): 235-240
引用本文:
常思佳, 王艳红, 郭海秀, 周晓霜, 冀贺, 田继华. 雷帕霉素通过mTORC1/p70S6K通路调控大鼠系膜细胞增殖及细胞周期的机制研究[J]. 药学学报, 2020, 55(2): 235-240.
CHANG Si-jia, WANG Yan-hong, GUO Hai-xiu, ZHOU Xiao-shuang, JI He, TIAN Ji-hua. Mechanisms of rapamycin on regulating rat mesangial cell proliferation and cell cycle through mTORC1/p70S6K pathways[J]. Acta Pharmaceutica Sinica, 2020, 55(2): 235-240.

雷帕霉素通过mTORC1/p70S6K通路调控大鼠系膜细胞增殖及细胞周期的机制研究
常思佳1, 王艳红1, 郭海秀1, 周晓霜2, 冀贺1, 田继华1
1. 山西医科大学, 山西 太原 030001;
2. 山西医科大学附属人民医院肾内科, 山西 太原 030012
摘要:
为了探究雷帕霉素对大鼠系膜细胞增殖、细胞周期的影响及其作用机制,将大鼠系膜细胞(HBZY-1)分为以下6组:对照组(control)、血小板衍生生长因子(platelet derivedgrowth factor,PDGF)20 ng·mL-1组、PDGF+雷帕霉素1、10、100和1 000nmol·L-1组;MTT法和流式细胞术检测雷帕霉素(1、10、100、1 000 nmol·L-1)作用后对细胞增殖和周期的影响;Western blot法检测周期蛋白D1(cyclin D1)、周期蛋白E(cyclin E)、周期素依赖性蛋白激酶2(cyclin-dependent kinase 2,CDK2)、周期素依赖性蛋白激酶4(cyclin-dependent kinase 4,CDK4)、p70S6K/p-p70S6K和p27的蛋白表达;Real-time-PCR法检测p27 mRNA。结果显示,雷帕霉素能显著抑制PDGF刺激系膜细胞(glomerular mesangial cells,MCs)引起的增殖,且呈剂量及时间依赖性,但随着浓度增加(1~1000 nmol·L-1),时间依赖性逐渐减弱;雷帕霉素可以将细胞周期阻滞在G0/G1期;对照组cyclin D1、cyclin E及CDK2、CDK4表达较低,PDGF组各蛋白表达均上调,与对照组比较差异有统计学意义(P<0.05),但雷帕霉素干预组与PDGF组比较,cyclin D1、cyclin E及CDK2、CDK4的表达均未见明显改变;雷帕霉素可以明显抑制p70S6K磷酸化,上调p27蛋白及mRNA的表达。上述结果表明,雷帕霉素具有抑制系膜细胞增殖的作用,该作用是通过mTORC1/p70S6K通路调控p27mRNA转录,使其蛋白表达增加,导致cyclin-CDK的活性降低,将细胞周期阻断在G0/G1期实现的。
关键词:    雷帕霉素      p27      系膜细胞      mTORC1/p70S6K     
Mechanisms of rapamycin on regulating rat mesangial cell proliferation and cell cycle through mTORC1/p70S6K pathways
CHANG Si-jia1, WANG Yan-hong1, GUO Hai-xiu1, ZHOU Xiao-shuang2, JI He1, TIAN Ji-hua1
1. Shanxi Medical University, Taiyuan 030001, China;
2. Department of Nephrology, the Affiliated People's Hospital of Shanxi Medical University, Taiyuan 030012, China
Abstract:
To explore the affect and mechanisms of rapamycin on mesangial cell proliferation and cell cycle, rat mesangial cells (HBZY-1) were cultured and divided into the six groups:normal; normal with platelet derived growth factor (PDGF) 20 ng·mL-1; PDGF + rapamycin 1, 10, 100, 1 000 nmol·L-1. The cell proliferation was measured by MTT in 24 and 48 h; flow cytometry was used to detect the cell cycle phase. Western blot was performed to determine cyclin D1,cyclin E, cyclin-dependent kinase 2 (CDK2), cyclin-dependent kinase 4 (CDK4), p27, p70S6K/p-p70S6K protein expression. The p27 mRNA was detect by Real-time PCR. The results showed that rapamycin significantly suppressed PDGF induced glomerular mesangial cells (MCs) proliferation in a dose and time-dependent manner, but with the dose increased (1 to 1 000 nmol·L-1), the time dependence gradually weakened. Rapamycin inhibited mesangial cell proliferation and arrested the cell cycle in the G0/G1 phase. PDGF at 20 ng·mL-1 significantly increased the expression of cyclin D1, cyclin E and CDK2, CDK4 (P<0.05), but rapamycin did not affect the expression of cyclin D1, cyclin E and CDK2, CDK4. Rapamycin can significantly inhibited p70S6K phosphorylation, up-regulated the expression of p27 protein and mRNA. Collectively, rapamycin has the effect of inhibiting the glomerular mesangial cells proliferation of mesangial cells by regulating the transcription of p27 mRNA, increasing its protein expression through the mTORC1/p70S6K pathway, resulting in decreased activity of cyclin-CDK, and blocking cell cycle in G0/G1 phase.
Key words:    rapamycin    p27    mesangial cell    mTORC1/p70S6K   
收稿日期: 2019-08-13
DOI: 10.16438/j.0513-4870.2019-0644
基金项目: 国家自然科学基金青年科学基金项目(81500529,81500518);山西医科大学博士启动基金(03201403).
通讯作者: 田继华,Tel:86-351-4135004,E-mail:jihuatian429@163.com
Email: jihuatian429@163.com
相关功能
PDF(478KB) Free
打印本文
0
作者相关文章
常思佳  在本刊中的所有文章
王艳红  在本刊中的所有文章
郭海秀  在本刊中的所有文章
周晓霜  在本刊中的所有文章
冀贺  在本刊中的所有文章
田继华  在本刊中的所有文章

参考文献:
[1] Stephanie K, Wang Y, Scholl V, et al. Low-dose mTOR inhibition by rapamycin attenuates progression in anti-thy1-induced chronic glomerulosclerosis of the rat[J]. Am J Physiol Renal Physiol, 2008, 294:440-449.
[2] Li J, Sang GK, Blenis J. Rapamycin:one drug, many effects[J]. Cell Metab, 2014, 19:373-379.
[3] Tian JH, Wang YH, Zhou XS. Rapamycin slows IgA nephropathy progression in the rat[J]. Am J Nephrol, 2014, 39:218-229.
[4] Huang K, Li R, Wei W. Sirt1 activation prevents anti-Thy1.1 mesangial proliferative glomerulonephritis in the rat through the Nrf2/ARE pathway[J]. Eur J Pharmacol, 2018, 832:138-144.
[5] Yu JS, Cui W. Proliferation, survival and metabolism:the role of PI3K/AKT/mTOR signalling in pluripotency and cell fate determination[J]. Development, 2016, 143:3050-3060.
[6] Saxton RA, Sabatini DM. mTOR signaling in growth, metabolism, and disease[J]. Cell, 2017, 168:960-976.
[7] Cobbold SP. The mTOR pathway and integrating immune regulation[J]. Immunology, 2013, 140:391-398.
[8] Morita M, Prudent J, Basu K. mTOR controls mitochondrial dynamics and cell survival via MTFP1[J]. Mol Cell, 2017, 67:922-935.e5.
[9] Bonegio R. Rapamycin ameliorates proteinuria-associated tubulointerstitial inflammation and fibrosis in experimental membranous nephropathy[J]. J Am Soc Nephrol, 2005, 16:2063-2072.
[10] Stephanie K, Wang RY, Scholl V. Low-dose mTOR inhibition by rapamycin attenuates progression in anti-thy1-induced chronic glomerulosclerosis of the rat[J]. Am J Physiol Renal Physiol, 2008, 294:440-449.
[11] Lock HR, Sacks SH, Robson MG. Rapamycin at subimmunosuppressive levels inhibits mesangial cell proliferation and extracellular matrix production[J]. Am J Physiol Renal Physiol, 2007, 292:76-81.
[12] Barnum KJ, O'Connell MJ. Cell cycle regulation by checkpoints[J]. Methods Mol Biol, 2014, 1170:29.
[13] Ingham M, Schwartz GK. Biology of neoplasia:cell-cycle therapeutics come of age[J]. J Clin Oncol, 2017, 35:2949-2959.
[14] Nurse P. A journey in science:cell-cycle control[J]. Mol Med, 2017, 22:112-119.
[15] Lin ZP, Zhu YL, Ratner ES. Targeting cyclin-dependent kinases for treatment of gynecologic cancers[J]. Front Oncol, 2018, 8:303.
[16] Kamenz J, Ferrell JE. The temporal ordering of cell-cycle phosphorylation[J]. Mol Cell, 2017, 65:371-373.
[17] Kar S. Unraveling cell-cycle dynamics in cancer[J]. Cell Syst, 2016, 2:8-10.
[18] Yang CH, Wu CC, Chen WT, et al. Expressions of p16 and p27 in urothelial carcinoma and their prognostic value[J]. Kaohsiung J Med Sci, 2014, 30:453-458.
[19] Karimian A, Ahmadi Y, Yousefi B. Multiple functions of p21 in cell cycle, apoptosis and transcriptional regulation after DNA damage[J]. DNA Repair, 2016, 42:63-71.
[20] Koepp DM. Cell cycle regulation by protein degradation[J]. Methods Mol Biol, 2014, 1170:61-73.
[21] Qiu LQ, Sinniah R, Hsu IH. Role of differential and cell type-specific expression of cell cycle regulatory proteins in mediating progressive glomerular injury in human IgA nephropathy[J]. Lab Invest, 2004, 84:1112-1125.
[22] Chu IM, Hengst L, Slingerland JM. The Cdk inhibitor p27 in human cancer:prognostic potential and relevance to anticancer therapy[J]. Nat Rev Cancer, 2008, 8:253-267.
[23] Sharma SS, Pledger WJ. The non-canonical functions of p27Kip1 in normal and tumor biology[J]. Cell Cycle, 2016, 15:1189-1201.
[24] Su B, Chen X, Zhong C, et al. All-trans retinoic acid inhibits mesangial cell proliferation by up-regulating p21Waf1/Cip1 and p27Kip1 and down-regulating Skp2[J]. J Nephrol, 2012, 25:1031.
[25] Suzuki S, Ohashi N, Kitagawa M. Roles of the Skp2/p27 axis in the progression of chronic nephropathy[J]. Cell Mol Life Sci, 2013, 70:3277-3287.
[26] Su M, Wang J, Wang C, et al. MicroRNA-221 inhibits autophagy and promotes heart failure by modulating the p27/CDK2/mTOR axis[J]. Cell Death Differ, 2015, 22:986-999.
[27] Sha M, Ye J, Luan ZY, et al. Celastrol induces cell cycle arrest by microRNA-21-mTOR-mediated inhibition p27 protein degradation in gastric cancer[J]. Cancer Cell Int, 2015, 15:101.
[28] Wang HC, Lee WS. Progesterone-induced migration inhibition in male rat aortic smooth muscle cells through the cSrc/AKT/ERK 2/p38 pathway-mediated up-regulation of p27[J]. Endocrinology, 2014, 155:1428-1435.
[29] Chen R, He F, He H, et al. Phosphorylation of P27 by AKT is required for inhibition of cell cycle progression in cholangiocarcinoma[J]. Dig Liver Dis, 2018, 50:501-506.
[30] Loewith R, Jacinto E, Wullschleger S, et al. Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control[J]. Mol Cell, 2002, 10:460-468.
[31] Shimobayashi M, Hall MN. Making new contacts:the mTOR network in metabolism and signalling crosstalk[J]. Nat Rev Mol Cell Biol, 2014, 15:155-162.
[32] Sarbassov DD, Ali SM, Sengupta S, et al. Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB[J]. Mol Cell, 2006, 22:159-168.
[33] Bar PL, Sabatini DM. Regulation of mTORC1 by amino acids[J]. Trends Cell Biol, 2014, 24:400-406.
[34] Dibble CC, Cantley LC. Regulation of mTORC1 by PI3K signaling[J]. Trends Cell Biol, 2015, 25:545-555.