药学学报, 2020, 55(2): 241-246
引用本文:
王禹璇, 刘海英, 姚红, 张华凤, 薛慧清. 中药黄芪蛋白抗肝癌细胞HepG2作用机制[J]. 药学学报, 2020, 55(2): 241-246.
WANG Yu-xuan, LIU Hai-ying, YAO Hong, ZHANG Hua-feng, XUE Hui-qing. The mechanism of anti-hepatocellular carcinoma cell line HepG2 by Chinese medicine Astragalus protein[J]. Acta Pharmaceutica Sinica, 2020, 55(2): 241-246.

中药黄芪蛋白抗肝癌细胞HepG2作用机制
王禹璇1, 刘海英2, 姚红1, 张华凤2, 薛慧清1
1. 山西中医药大学, 基于炎性反应的重大疾病创新药物山西省重点实验室, 山西 晋中 030619;
2. 中国科学技术大学生命科学学院, 安徽 合肥 230031
摘要:
本文考察了黄芪蛋白对肝癌细胞HepG2的增殖抑制作用,结合转录组学探讨黄芪蛋白抗肿瘤作用机制。黄芪干燥根部经硫酸铵沉淀,得到分子质量大小不一的黄芪蛋白(Huang Qi protein,HQP)。通过血球计数法检测黄芪蛋白对肿瘤细胞HepG2的影响及其毒性作用;结合流式细胞术和Hoechst/propidium iodide(PI)双染测定细胞死亡情况;Western blot测定坏死标志蛋白受体相互作用的丝氨酸/苏氨酸激酶1(RIP1);将对照组与加药组RNA进行转录组测序,对RNA测序(RNA-seq)结果进行差异表达基因分析;qRT-PCR验证候选基因mRNA相对表达量。结果表明,随着HQP浓度增加,对肝癌细胞HepG2增殖抑制作用愈加明显,当HQP质量浓度为100 μg·mL-1时,细胞坏死率增加到18.78%,同时在显微镜下观察到PI单染的红色坏死细胞增多,Western blot结果显示RIP1蛋白水平增加。RNA-seq结果分析得到2.6万个相关基因受HQP调控,其中979个基因受调控较明显。KEGG分析发现部分差异表达基因与p53信号通路相关,qRT-PCR验证测序结果可靠。黄芪蛋白使HepG2细胞发生程序性坏死可能与p53信号通路有关。
关键词:    黄芪蛋白      程序性细胞死亡      RNA测序      p53      RIP1     
The mechanism of anti-hepatocellular carcinoma cell line HepG2 by Chinese medicine Astragalus protein
WANG Yu-xuan1, LIU Hai-ying2, YAO Hong1, ZHANG Hua-feng2, XUE Hui-qing1
1. Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, Shanxi Univeraity of Traditional Chinese Medicine, Jinzhong 030619, China;
2. Academy of Life Science, University of Science and Technology of China, Hefei 230031, China
Abstract:
To detect the inhibitory effect of Astragalus protein on the proliferation of hepatocellular carcinoma cell line HepG2, transcriptomics was used to explore the anti-tumor mechanism of Astragalus protein. The dried roots of Astragalus was precipitated by ammonium sulfate to obtain Huang Qi protein (HQP) with different molecular weights. The effect of HQP on HepG2 and its toxic effect were detected by hemocytometry. Cell necrosis was detected by flow cytometry and Hoechst/propidium iodide (PI) double staining. The necrotic marker protein receptor interacting serine/threonine kinase 1 (RIP1) was determined by Western blot. Transcriptome sequencing was performed on the control group and dosing group RNA, and differential expression genes were analyzed for RNA-seq results. qRT-PCR was used to verified the relative mRNA expression levels of candidate genes. The results showed that the inhibition of HepG2 proliferation was more obvious with the increase of HQP concentration. When the concentration of HQP was 100 μg·mL-1, the necrosis rate increased to 18.78%, and the number of red necrotic cells stained with PI was observed under the microscope. The Western blot results showed an increase in RIP1 protein levels. The results of RNA-seq analysis showed that 26 000 related genes were regulated by HQP, and 979 genes were more regulated. KEGG analysis found that some differentially expressed genes were associated with p53 signaling pathway, and qRT-PCR further verified that the sequencing results were reliable. HQP may cause programmed necrosis of HepG2 cells and may be involved in the p53 signaling pathway.
Key words:    Huang Qi protein    programmed cell death    RNA sequencing    p53    RIP1   
收稿日期: 2019-08-22
DOI: 10.16438/j.0513-4870.2019-0684
基金项目: 国家国际合作专项项目(2013DFA30700);山西省黄芪资源产业化及产业国际化协同创新中心项目(HQXTCXZX-007).
通讯作者: 张华凤,Tel:86-351-3179766,E-mail:xuehuiqing@sina.com;薛慧清,E-mail:hzhang22@ustc.edu.cn
Email: xuehuiqing@sina.com;hzhang22@ustc.edu.cn
相关功能
PDF(508KB) Free
打印本文
0
作者相关文章
王禹璇  在本刊中的所有文章
刘海英  在本刊中的所有文章
姚红  在本刊中的所有文章
张华凤  在本刊中的所有文章
薛慧清  在本刊中的所有文章

参考文献:
[1] Wei B, Huang QY, Huang SR, et al. Trichosanthin-induced autophagy in gastric cancer cell MKN-45 is dependent on reactive oxygen species (ROS) and NF-κB/p53 pathway[J]. J Pharmacol Sci, 2016, 131:77-83.
[2] Ying J, Wang J, Ji H, et al. Transcriptome analysis of phycocyanin inhibitory effecrs on SKOV-3 cell proliferation[J]. Gene, 2016, 585:58-64.
[3] Danan-Gotthold M, Golan-Gerstl R, Eisenberg E, et al. Identifiaction of recurrent regulated alternative splicing events across human solid tumors[J]. Nucleic Acids Res, 2015, 43:5130-5144.
[4] Li H, Zhang N, Li YM, et al. High-througuput transcriptomic sequencing of Rheum palmatum L. seedlings and elucidation of genes in anthraquinone biosynthesis[J]. Acta Pharm Sin (药学学报), 2018, 53:1908-1917.
[5] Zhao JY, Yang XZ, Niu X, et al. Effects of glycoproteins from Astragalus Menbranaceus on proliferation and activation of T cells[J]. Chin Arch Tradit Chin Med (中华中医药学刊), 2015, 33:49-50.
[6] Zhang PJ, Guo MF, Xing YX, et al. Immunomodulatory effect of Huangqi glycoprotein on mice with experimental autoimmune encephalomyelitis[J]. Chin J Cell Mol Immunol (细胞与分子免疫学杂志), 2016, 32:54-58.
[7] Vaseva AV, Marchenko ND, Ji K, et al. p53 opens the mitochondrial permeability transition pore to trigger necrosis[J]. Cell, 2012, 149:1536-1548.
[8] Ying Y, Padanilam BJ. Regulation of necrotic cell death:p53, PARP1 and cyclophilin D-overlapping pathways of regulated necrosis?[J]. Cell Mol Life Sci, 2016, 73:2309-2324.
[9] Valenzuela MT, Guerrero R,Nunez MI, et al. PARP-1 modifies the effectiveness of p53-mediated DNA damage response[J]. Oncogene, 2002, 21:1108-1116.
[10] Elkholi R, Chipuk JE. How do I kill thee? Let me count the ways:p53 regulates PARP-1dependent necrosis[J]. Bioessays, 2014, 36:46-51.
[11] Montero J, Dutta C, Bodegom D, et al. p53 regulates a non-apoptotic death induced by ROS[J]. Cell Death Different, 2013, 20:1465-1474.
[12] Helmke C, Becker S, Strebhardt K. The role of Plk3 in oncogenesis[J]. Oncogene, 2015, 35:135-147.
[13] Ueda K, Arakawa H, Nakamura Y. Dual-specificity phosphatase 5(DUSP5) as a direct transcriptional target of tumor suppressor p53[J]. Oncogene, 2003, 22:5586-5591.
[14] Zhang ZM, Chen C, Wang G, et al. Aberrant expression of the p53-inducible antiproliferative gene BTG2 in hepatocellular carcinoma is associated with overexpression of the cell cycle-related proteins[J]. Cell Biochem Biophys, 2011, 61:83-91.
[15] Tsui KH, Chiang KC, Lin YH, et al. BTG2 is a tumor suppressor gene upregulated by p53 and PTEN in human bladder carcinomacells[J]. Cancer Med, 2018, 7:184-195.
[16] Hamilton DW, Lusher ME, Lindsey JC, et al. Epigenetic inactivation of the RASSF1A tumour suppressor gene in ependymoma[J]. Cancer Lett, 2005, 227:75-81.
[17] Sakai N, Saito Y, Fujiwara Y, et al. Identification of protein arginine N-methyltransferase 5(PRMT5) as a novel interacting protein with the tumor suppressor protein RASSF1A[J]. Biochem Biophys Res Commun, 2015, 467:778-784.
[18] Lei Y, Hu C, Xu H, et al. HPV16 infection regulates RASSF1A transcription mediated by p53[J]. Mol Med Rep, 2013, 8:413-418.
[19] Zhou XG, Zhang P, Han H. Hypermethylated in cancer 1(HIC1) suppresses bladder cancer progression by targeting yes-associated protein (YAP) pathway[J]. J Cell Biochem, 2019, 120:6471-6481.
[20] Khan N,Lawlor KE, Murphy JM, et al. More to life than death:molecular dererminants of necroptotic and non-necroptotic RIP3 kinase signaling[J]. Curr Opin Immunol, 2014, 26:76-89.
[21] Nehs MA, Lin CI, Kozono DE, et al. Necroptosis is a novel mechanism of radiation-induced cell death in anaplastic thyroid and adrenocortical cancers[J]. Surgery, 2011, 150:1032-1039.
[22] Su DH, Lai W, Lin M, et al. Receptor interacting protein kinase-3 derermines cellular necrotic pesponse to TNF-alpha[J]. Cell, 2009, 137:1100-1111.
[23] Zhang D, Shao J, Lin J, et al. RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrdsis[J]. Science, 2009, 325:332-336.