药学学报, 2020, 55(2): 305-314
引用本文:
冯彦, 孟美黛, 冯建有, 王鹏, 闫艳, 秦雪梅, 高晓霞. 基于多维组学探究逍遥散低极性部位对CUMS模型大鼠的抗抑郁作用[J]. 药学学报, 2020, 55(2): 305-314.
FENG Yan, MENG Mei-dai, FENG Jian-you, WANG Peng, YAN Yan, QIN Xue-mei, GAO Xiao-xia. Antidepressant-like effects of the petroleum ether fraction of Xiaoyaosan in the CUMS rat model of depression[J]. Acta Pharmaceutica Sinica, 2020, 55(2): 305-314.

基于多维组学探究逍遥散低极性部位对CUMS模型大鼠的抗抑郁作用
冯彦1,2, 孟美黛1,2, 冯建有1,2, 王鹏1,2, 闫艳1, 秦雪梅1, 高晓霞1
1. 山西大学中医药现代研究中心, 山西 太原 030006;
2. 山西大学化学化工学院, 山西 太原 030006
摘要:
研究逍遥散低极性部位对抑郁模型大鼠干预作用,从肠道菌群和代谢物角度探讨逍遥散低极性部位抗抑郁作用机制。所有动物实验均通过山西大学科学研究伦理审查委员会审查。采用慢性温和不可预知应激(CUMS)程序对大鼠进行造模,以逍遥散低极性部位及阳性药(文拉法辛)为干预药物,结合16S rRNA基因测序和LC-MS代谢组学分析方法,探究逍遥散低极性部位对CUMS大鼠盲肠内容物肠道菌群和代谢物的影响,并对肠道菌群与代谢物进行Pearson关联分析。结果显示,逍遥散低极性部位显著改善CUMS大鼠的抑郁样行为;回调CUMS大鼠海马脑源性神经营养因子(BDNF)水平。肠道微生物群分析显示:逍遥散低极性部位给药可以增加CUMS模型大鼠微生物群的多样性,显著回调CUMS模型大鼠肠道微生物中罗斯氏菌属(Rothia)、普雷沃氏菌属([Prevotella]),其主要与肠道炎症和短链脂肪酸的产生有关。代谢组学结果表明,盲肠内容物中鉴定出与抑郁症相关的20种生物标志物,逍遥散低极性部位干预后可回调17种,涉及的通路为亚油酸代谢、牛磺酸和亚牛磺酸代谢、初级胆汁酸生物合成、精氨酸和脯氨酸代谢。相关分析进一步表明,逍遥散低极性部位调节的肠道菌群与盲肠内容物代谢产物之间存在很强的相关性。综上,逍遥散低极性部位可能通过调节肠道菌群的组成及盲肠内容物的代谢物及通路发挥抗抑郁疗效,该研究为后续探索逍遥散低极性部位抗抑郁机制提供创新思路和实验依据。
关键词:    逍遥散      抑郁症      肠道菌群      16S rRNA技术      代谢组学      LC-MS     
Antidepressant-like effects of the petroleum ether fraction of Xiaoyaosan in the CUMS rat model of depression
FENG Yan1,2, MENG Mei-dai1,2, FENG Jian-you1,2, WANG Peng1,2, YAN Yan1, QIN Xue-mei1, GAO Xiao-xia1
1. Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China;
2. College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
Abstract:
This study aimed to investigate the effect of the petroleum ether fraction of Xiaoyaosan (XY-A) in a rat depression model with consideration of an underlying mechanism based on gut microbiota and metabolomics. All procedures involving animal treatment were approved according to the Committee on the Ethics of Animal Experiments of Shanxi University. A rat model was established using the chronic unpredictable mild stress (CUMS) procedure and XY-A and venlafaxine (positive control) were used as intervention drugs. Sequencing of the 16S rRNA gene combined with LC-MS metabolomics was used to investigate the effects of XY-A on gut microbiota and metabolites in CUMS-induced depression, and Pearson correlation analysis was carried out on gut microbiota and metabolites. The results showed that XY-A significantly improved the depression-like behavior of CUMS rats and restored the level of brain-derived neurotrophic factor (BDNF) in the hippocampus. Gut microbiota analysis revealed that XY-A can increase the diversity of microbial species in CUMS rats and significantly restored the relative abundance of intestinal Rothia[Prevotella], with effects on intestinal inflammation and the production of short-chain fatty acids. Cecal content metabolomics identified twenty biomarkers that were altered by depression, whereas administration of XY-A ameliorated the changes in seventeen metabolites, with the most strongly affected metabolic pathways being linoleic acid metabolism, taurine and hypotaurine metabolism, primary bile acid biosynthesis, and arginine and proline metabolism. Correlation analysis further showed that there was a strong relationship between the gut microbiota and the cecal content metabolites. In summary, XY-A may exert antidepressant effects by regulating the composition of the gut microbiota and the metabolites and pathways of the cecum. The results provide a reference for the potential molecular mechanism of antidepressant action of XY-A.
Key words:    Xiaoyao powder    depression    gut microbiota    metabolomics    16S rRNA gene sequencing    metabolite   
收稿日期: 2019-08-08
DOI: 10.16438/j.0513-4870.2019-0542
基金项目: 国家自然科学基金资助项目(81473415);山西省应用基础研究优秀青年基金会项目(201701D211009);山西省科技创新重点团队(201605D131045-18);山西省重点实验室(201605D111004).
通讯作者: 高晓霞,Tel:86-351-7011501,E-mail:gaoxiaoxia@sxu.edu.cn
Email: gaoxiaoxia@sxu.edu.cn
相关功能
PDF(816KB) Free
打印本文
0
作者相关文章
冯彦  在本刊中的所有文章
孟美黛  在本刊中的所有文章
冯建有  在本刊中的所有文章
王鹏  在本刊中的所有文章
闫艳  在本刊中的所有文章
秦雪梅  在本刊中的所有文章
高晓霞  在本刊中的所有文章

参考文献:
[1] Moussavi S, Chatterji S, Verdes E, et al. Depression, chronic diseases, and decrements in health:results from the World Health Surveys[J]. Lancet, 2007, 370:851-858.
[2] Yu M, Jia H, Zhou C, et al. Variations in gut microbiota and fecal metabolic phenotype associated with depression by 16S rRNA gene sequencing and LC/MS-based metabolomics[J]. J Pharm Biomed Anal, 2017, 138:231-239.
[3] Mu L, Sun JX. Regulation mechanism of depression and antidepressant drug targets[J]. J Int Pharm Res (国际药学研究杂志), 2015, 42:463-466.
[4] Yu M, Jia H, Zhou C, et al. Variations in gut microbiota and fecal metabolic phenotype associated with depression by 16S rRNA gene sequencing and LC/MS-based metabolomics[J]. J Pharm Biomed Anal, 2017, 138:231-239.
[5] Wang Y, Kasper LH. The role of microbiome in central nervous system disorders[J]. Brain Behav Immun, 2014, 38:1-12.
[6] Jiang HY. Diversity of Gut Microbiota Associated with Patients with Major Depressive Disorder (人类肠道微生物群落菌群多样性变化与抑郁症的相关性研究)[D]. Hangzhou:Zhejiang University, 2015.
[7] Ding XF, Liu Y, Yan ZY, et al. Involvement of normalized glial fibrillary acidic protein expression in the hippocampi in antidepressant-like effects of Xiaoyaosan on chronically stressed mice[J]. Evid Based Complement Alternat Med, 2017, 2017:1-13.
[8] Zhou Y, Lu L, Li Z, et al. Antidepressant-like effects of the fractions of Xiaoyaosan on rat model of chronic unpredictable mild stress[J]. J Ethnopharmacol, 2011, 137:236-244.
[9] Li DP, Guo MZ, Xu WT. Advances and applications on methodology of 16S rRNA sequencing in gut microbiota analysis[J]. Biotechnol Bull (生物技术通报), 2015, 31:71-77.
[10] Peng GJ, Shi BY, Tian JS, et al. 1H NMR based metabonomics study on the antidepressant effect of genipin in rat hippocampus[J]. Acta Pharm Sin (药学学报), 2014, 49:209-216.
[11] Gao X, Liang M, Fang Y, et al. Deciphering the differential effective and toxic responses of Bupleuri Radix following the induction of chronic unpredictable mild stress and in healthy rats based on serum metabolic profiles[J]. Front Pharmacol, 2018, 8:995.
[12] Sharon G, Cruz NJ, Kang DW, et al. Human gut microbiota from autism spectrum disorder promote behavioral symptoms in mice[J]. Cell, 2019, 177:1600-1618.
[13] Hoyles L, Fernández-Real JM, Federici M, et al. Molecular phenomics and metagenomics of hepatic steatosis in non-diabetic obese women[J]. Nat Med, 2018, 24:1070-1080.
[14] Zhu SW, Gong WX, Chen CC, et al. The contribution of Radix Bupleuri-Radix Paeoniae Alba herb pair to Xiaoyaosan based on 1H-NMR metabolomics[J]. Acta Pharm Sin (药学学报), 2019, 54:720-728.
[15] Chen DL, Yang X, Zheng CQ, et al. Extracts from Hericium erinaceus relieve inflammatory bowel disease by regulating immunity and gut microbiota[J]. Oncotarget, 2017, 8:85838-85857.
[16] Ogłodek EA, Just MJ, Szromek AR, et al. Melatonin and neurotrophins NT-3, BDNF, NGF in patients with varying levels of depression severity[J]. Pharmacol Rep, 2016, 14:721-731.
[17] Abdallah IN, Ragab SH, Abd EBA, et al. Frequency of Firmicutes and Bacteroidetes in gut microbiota in obese and normal weight Egyptian children and adults[J]. Arch Med Sci, 2011, 3:501-507.
[18] Ran YL. Studies on Chemical Composition and Quality Control of Antidepressiant Fractions from Xiaoyaosan (逍遥散抗抑郁有效部位化学成分及质量控制研究)[D]. Taiyuan:Shanxi University, 2012.
[19] Dowlati Y, Herrmann N, Swardfager W, et al. A meta-analysis of cytokines in major depression[J]. Biol Psychiatry, 2010, 67:446-457.
[20] Howren MB, Lamkin DM, Suls J. Associations of depression with C-reactive protein, IL-1, and IL-6:a meta-analysis[J]. Psychosom Med, 2009, 71:171-186.
[21] Gao L, Li JQ, Zhou YZ, et al. The effects of baicalein on cortical pro-inflammatory cytokines and the intestinal microbiome in senescence accelerated mouse prone 8[J]. ACS Chem Neurosci, 2018, 9:1714-1724.
[22] Dziarski R, Park SY, Kashyap DR, et al. Pglyrp-regulated gut microflora Prevotella falsenii, Parabacteroides distasonis and Bacteroides eggerthii enhance and Alistipes finegoldii attenuates colitis in mice[J]. PLoS One, 2016, 11:e0146162.
[23] Xu AQ, Li ZJ, Wang YL, et al. Progress in the researches on the gut-health-oriented functional foods[J]. Food Mach (食品与机械), 2010, 26:158-163.
[24] Wang F, Jin Z, Shen K, et al. Butyrate pretreatment attenuates heart depression in a mice model of endotoxin-induced sepsis via anti-inflammation and anti-oxidation[J]. Am J Emerg Med, 2017, 35:402-409.
[25] Chen JZ, Vitetta L. Mitochondria could be a potential key mediator linking the intestinal microbiota to depression[J]. J Cell Biochem, 2019. DOI:10.1002/jcb.29311
[26] Thesing CS, Bot M, Milaneschi Y, et al. Omega-3 and omega-6 fatty acid levels in depressive and anxiety disorders[J]. Psychoneuroendocrinology, 2018, 87:53-62.
[27] Patra BN, Khandelwal SK, Chadda RK, et al. A controlled study of plasma fatty acids in Indian patients with depressive episode[J]. Asian J Psychiatry, 2018, 31:152-156.
[28] Zhang Z, Li H, Xu G, et al. Liver-targeted delivery of insulin-loaded nanoparticles via enterohepatic circulation of bile acids[J]. Drug Deliv, 2018, 25:1224-1233.
[29] Andres RH, Ducray AD, Schlattner U, et al. Functions and effects of creatine in the central nervous system[J]. Brain Res Bull, 2008, 76:329-343.
[30] Kious BM, Kondo DG, Renshaw PF. Creatine for the treatment of depression[J]. Biomolecules, 2019, 9:406.
[31] Lee HJ, Kim KW. Anti-inflammatory effects of arbutin in lipopolysaccharide-stimulated BV2 microglial cells[J]. Inflamm Res, 2012, 61:817-825.
[32] Jeong JW, Cha HJ, Han MH, et al. Spermidine protects against oxidative stress in inflammation models using macrophages and zebrafish[J]. Biomol Ther, 2018, 26:146-156.
[33] Nahid A, Vahid G, Mehdi OM, et al. Taurine prevents mitochondrial membrane permeabilization and swelling upon interaction with manganese:implication in the treatment of cirrhosis-associated central nervous system complications[J]. J Biochem Mol Toxicol, 2018, 32:e22216.
[34] Yuan J, Yan CJ, Zhou Q, et al. Intervention of taurine on mice with depression model[J]. Food Sci (食品科学), 2019. http://kns.cnki.net/kcms/detail/11.2206.TS.20190409.1356.022.html.
相关文献:
1.杨小玲, 赵思俊, 田俊生, 张斌, 王佩义, 高晓霞, 秦雪梅.龟龄集对D-半乳糖致衰老大鼠血清代谢组学的影响[J]. 药学学报, 2020,55(2): 315-322
2.朱十伟, 宫文霞, 陈聪聪, 阴奇材, 李肖, 秦雪梅, 杜冠华, 周玉枝.基于1H NMR代谢组学技术的柴胡-白芍药对对逍遥散的贡献研究[J]. 药学学报, 2019,54(4): 720-728
3.李天琪, 孙珊珊, 张金月, 王映红.高脂血症金黄地鼠粪便和肠道内容物代谢轮廓的研究[J]. 药学学报, 2018,53(5): 791-796
4.庞溢媛, 薛立英, 郑艳红, 周玉枝, 秦雪梅, 杜冠华, 张翔.基于UHPLC-MS/MS代谢组学技术的不同采收期黄芩质量比较研究[J]. 药学学报, 2017,52(12): 1903-1909
5.何小燕, 陈建丽, 向欢, 高耀, 田俊生, 秦雪梅, 杜冠华.谷氨酸和皮质酮诱导的PC12抑郁症细胞模型差异性的1H NMR代谢组学研究[J]. 药学学报, 2017,52(2): 245-252
6.夏小涛, 孙宁, 刘彩春, 秦雪梅, 田俊生.基于1H NMR代谢组学的抑郁症生物标志物发现及帕罗西汀干预作用[J]. 药学学报, 2016,51(4): 595-599
7.高耀, 高丽, 高晓霞, 周玉枝, 秦雪梅, 田俊生.基于网络药理学的逍遥散抗抑郁活性成分作用靶点研究[J]. 药学学报, 2015,50(12): 1589-1595
8.杨雯晴, 李运伦, 蒋海强.基于高效液相色谱-质谱技术的缬沙坦作用机制的研究[J]. 药学学报, 2015,50(7): 875-881
9.彭国茳, 史碧云, 田俊生, 高杉, 秦雪梅.京尼平抗抑郁作用的1H NMR代谢组学机制研究[J]. 药学学报, 2014,49(2): 209-216
10.杨丽娜, 温静, 孙毅, 梁佳佳, 郑卫华, 张丽丽, 周于杰, 熊志立.四逆散抗肝损伤作用的大鼠血清UPLC-MS/MS代谢组学研究[J]. 药学学报, 2014,49(3): 368-373