药学学报, 2020, 55(2): 323-329
引用本文:
蔡颖, 陈阳, 洪战英, 柴逸峰. 浓度梯度微流控芯片平台的构建及其应用于抗白念珠菌药物快速筛选研究[J]. 药学学报, 2020, 55(2): 323-329.
CAI Ying, CHEN Yang, HONG Zhan-ying, CHAI Yi-feng. Construction of a concentration gradient microfluidic chip platform for the rapid screening of drugs active against Candida albicans[J]. Acta Pharmaceutica Sinica, 2020, 55(2): 323-329.

浓度梯度微流控芯片平台的构建及其应用于抗白念珠菌药物快速筛选研究
蔡颖1,2, 陈阳2,3, 洪战英1,2, 柴逸峰2
1. 福建中医药大学药学院, 福建 福州 350122;
2. 海军军医大学药学院, 上海 200433;
3. 西宁联勤保障中心药品仪器监督检验站, 甘肃 兰州 730050
摘要:
本文建立了用于抗白念珠菌药物快速筛选的浓度梯度微流控芯片平台,通过荧光示踪剂荧光素钠在芯片上的分布定性考察浓度梯度生成情况,采用HPLC法对芯片内模型药物氟康唑的浓度梯度分布进行定量分析,进一步比较不同流速条件对浓度梯度形成的影响,最终确定两水相流速1∶1的比例用于后续药物筛选研究。以阿尔玛蓝为细胞活力指示剂,通过该平台分别进行了两性霉素B、氟康唑、伊曲康唑、伏立康唑、泊沙康唑、特比萘芬、5-氟胞嘧啶、卡泊芬净的药敏实验,快速高效地获得了药物的MIC范围,且与CLSI建议的白念珠菌敏感株的MIC值相一致,表明该平台可以通过一次实验快速筛选得到抗菌药物的MIC值范围。此外,该批次白念珠菌对特比萘芬呈现耐药,与96孔板法验证结果一致,表明该方法还可以用于耐药菌株的快速筛选。
关键词:    微流控芯片      浓度梯度生成      表征      药物筛选      白念珠菌     
Construction of a concentration gradient microfluidic chip platform for the rapid screening of drugs active against Candida albicans
CAI Ying1,2, CHEN Yang2,3, HONG Zhan-ying1,2, CHAI Yi-feng2
1. School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China;
2. School of Pharmacy, Naval Medical University, Shanghai 200433, China;
3. Drug Instrument Supervision and Inspection Station, Xining Joint Logistics Support Center, Lanzhou 730050, China
Abstract:
Drug screening against Candida albicans has become more urgent due to the increasing incidence of infection and the development of drug-resistant strains. The microfluidic chip technique has shown great potential for high-throughput drug screening. In this study we developed a concentration gradient microfluidic chip platform for drug screening against Candida albicans. The generated concentration gradient on this platform was investigated qualitatively by monitoring the distribution of the fluorescent tracer fluorescein sodium and quantitatively by following the distribution of the model drug fluconazole as analyzed by HPLC; the effect of different flow conditions on the concentration gradient were determined. The ratio of the two aqueous phase flow rates was determined in the subsequent drug screening studies. Alamar Blue, an indicator of cell viability, was used in the susceptibility test for amphotericin B, fluconazole, itraconazole, voriconazole, posaconazole, terbinafine, 5-fluorocytosine and caspofungin as carried out on the established chip platform. The MIC range of the drugs, which was consistent with the MIC values of the CLSI-recommended standard, were obtained quickly and efficiently through the use of this platform, indicating that this new platform can quickly screen a series of antibacterial drugs in one run. In addition, the strain of Candida albicans we used showed resistance to terbinafine in our platform assay, consistent with the results of a 96-well plate assay, indicating that the platform can also be used for rapid screening of resistant strains.
Key words:    microfluidic chip    concentration gradient generation    characterization    drug screening    Candida albicans   
收稿日期: 2019-09-23
DOI: 10.16438/j.0513-4870.2019-0770
基金项目: 国家自然科学基金资助项目(81872829,81373376).
通讯作者: 洪战英,E-mail:hongzhy001@163.com
Email: hongzhy001@163.com
相关功能
PDF(551KB) Free
打印本文
0
作者相关文章
蔡颖  在本刊中的所有文章
陈阳  在本刊中的所有文章
洪战英  在本刊中的所有文章
柴逸峰  在本刊中的所有文章

参考文献:
[1] Kullberg BJ, Arendrup MC. Invasive candidiasis[J]. N Engl J Med, 2015, 373:1445-1456.
[2] Quindos G. Epidemiology of candidaemia and invasive candidiasis. A changing face[J]. Rev Iberoam Micol, 2014, 31:42-48.
[3] Arendrup MC. Epidemiology of invasive candidiasis[J]. Curr Opin Crit Care, 2010, 16:445-452.
[4] Lohse MB, Gulati M, Johnson AD, et al. Development and regulation of single- and multi-species Candida albicans biofilms[J]. Nat Rev Microbiol, 2018, 16:19-31.
[5] Gow NAR, Yadav B. Microbe profile: Candida albicans:a shape-changing, opportunistic pathogenic fungus of humans[J]. Microbiology, 2017, 163:1145-1147.
[6] Saadi W, Wang SJ, Lin F, et al. A parallel-gradient microfluidic chamber for quantitative analysis of breast cancer cell chemotaxis[J]. Biomed Microdevices, 2006, 8:109-118.
[7] Gu Y, Hegde V, Bishop KJM. Measurement and mitigation of free convection in microfluidic gradient generators[J]. Lab Chip, 2018, 18:3371-3378.
[8] Li Y, Xuan J, Hu R, et al. Microfluidic triple-gradient generator for efficient screening of chemical space[J]. Talanta, 2019, 204:569-575.
[9] Jeon J, Choi N, Chen H, et al. SERS-based droplet microfluidics for high-throughput gradient analysis[J]. Lab Chip, 2019, 19:674-681.
[10] Tang M, Huang X, Chu Q, et al. A linear concentration gradient generator based on multi-layered centrifugal microfluidics and its application in antimicrobial susceptibility testing[J]. Lab Chip, 2018, 18:1452-1460.
[11] Khoo BL, Grenci G, Jing T, et al. Liquid biopsy and therapeutic response:circulating tumor cell cultures for evaluation of anticancer treatment[J]. Sci Adv, 2016, 2:e1600274.
[12] Lee K, Kim C, Ahn B, et al. Generalized serial dilution module for monotonic and arbitrary microfluidic gradient generators[J]. Lab Chip, 2009, 9:709-717.
[13] Somaweera H, Ibraguimov A, Pappas D. A review of chemical gradient systems for cell analysis[J]. Anal Chim Acta, 2016, 907:7-17.
[14] Xiong B, Ren K, Shu Y, et al. Recent developments in microfluidics for cell studies[J]. Adv Mater, 2014, 26:5525-5532.
[15] Gonzalez-Suarez AM, Pena-Del Castillo JG, Hernandez-Cruz A, et al. Dynamic generation of concentration- and temporal-dependent chemical signals in an integrated microfluidic device for single-cell analysis[J]. Anal Chem, 2018, 90:8331-8336.
[16] Ma Y, Pan JZ, Zhao SP, et al. Microdroplet chain array for cell migration assays[J]. Lab Chip, 2016, 16:4658-4665.
[17] Salek MM, Carrara F, Fernandez V, et al. Bacterial chemotaxis in a microfluidic T-maze reveals strong phenotypic heterogeneity in chemotactic sensitivity[J]. Nat Commun, 2019, 10:1877.
[18] Ben Yehezkel T, Rival A, Raz O, et al. Synthesis and cell-free cloning of DNA libraries using programmable microfluidics[J]. Nucleic Acids Res, 2016, 44:e35.
[19] Mulholland T, McAllister M, Patek S, et al. Drug screening of biopsy-derived spheroids using a self-generated microfluidic concentration gradient[J]. Sci Rep, 2018, 8:14672.
[20] Wu J, Chen Q, Liu W, et al. A simple and versatile microfluidic cell density gradient generator for quantum dot cytotoxicity assay[J]. Lab Chip, 2013, 13:1948-1954.
[21] Li L, Li Y, Shao Z, et al. Simultaneous assay of oxygen-dependent cytotoxicity and genotoxicity of anticancer drugs on an integrated microchip[J]. Anal Chem, 2018, 90:11899-11907.
[22] Zheng Z, Chen Y, Li WH, et al. Study on droplet microfluidic chips for drug screening against Candida albicans[J]. Acta Pharm Sin (药学学报), 2017, 52:1884-1889.
[23] Bi S, Hu GH, Hu DD, et al. Evaluation of antifungal drugs using a Caenorhabditis elegans-Candida albicans infection model[J]. Chin J Mycol (中国真菌学杂志), 2016, 11:135-139.
[24] McDonald JC, Duffy DC, Anderson JR, et al. Fabrication of microfluidic systems in poly(dimethylsiloxane)[J]. Electrophoresis, 2000, 21:27-40.
[25] Wang C, Yang Z, Peng Y, et al. Application of 460 nm visible light for the elimination of Candida albicans in vitro and in vivo[J]. Mol Med Rep, 2018, 18:2017-2026.
[26] Ma YM, Zhu YJ, Lin WJ, et al. The resistance of Candida albicans to common antifungal drugs and its expression of CDR1 and CDR2 gene[J]. Matern Child Health Care China (中国妇幼保健), 2010, 25:3620-3623.
[27] Kim S, Masum F, Kim JK, et al. On-chip phenotypic investigation of combinatory antibiotic effects by generating orthogonal concentration gradients[J]. Lab Chip, 2019, 19:959-973.
相关文献:
1.蔡颖, 陈阳, 周雯婷, 廖跃华, 洪战英, 柴逸峰.基于微流控芯片的体外血脑屏障模型构建与应用研究进展[J]. 药学学报, 2019,54(2): 269-280
2.郑振, 陈阳, 李武宏, 朱臻宇, 洪战英, 柴逸峰.基于液滴微流控芯片技术的抗白念珠菌药物筛选研究[J]. 药学学报, 2017,52(12): 1884-1889