药学学报, 2020, 55(2): 335-344
引用本文:
谢德金, 叶友杰, 杨德明, 张娅欣, 何天友, 陈礼光, 郑郁善. 巴戟天MoDXR基因及其启动子的克隆与分析[J]. 药学学报, 2020, 55(2): 335-344.
XIE De-jin, YE You-jie, YANG De-ming, ZHANG Ya-xin, HE Tian-you, CHEN Li-guang, ZHENG Yu-shan. Cloning and analysis of the DXR gene and its promoter in Morinda officinalis[J]. Acta Pharmaceutica Sinica, 2020, 55(2): 335-344.

巴戟天MoDXR基因及其启动子的克隆与分析
谢德金1, 叶友杰1, 杨德明1, 张娅欣1, 何天友2, 陈礼光1, 郑郁善1,2
1. 福建农林大学林学院, 福建 福州 350002;
2. 福建农林大学园林学院, 福建 福州 350002
摘要:
从巴戟天中克隆MEP途径中的1-脱氧-D-木酮糖5-磷酸还原异构酶基因MoDXR及其启动子序列并进行生物信息学分析、启动子区顺式作用元件分析,以及进行原核表达分析。根据巴戟天转录组中DXR基因原始序列和NCBI-ORFfinder分析,设计特异性引物,并进行RT-PCR扩增和生物信息学分析;采用染色体步移克隆MoDXR基因的5'端启动子序列;通过亚细胞定位分析MoDXR基因在细胞中的位置;构建原核表达载体pET-28a-MoDXR,导入BL21(DE3)表达感受态细胞后,在IPTG诱导下表达。从巴戟天中克隆的MoDXR基因,其cDNA全长2 015 bp,预测的阅读框大小为1 425 bp,编码474个氨基酸,分子质量为51.27 kDa;BlastP序列比对分析表明MoDXR基因与其他植物的DXR基因具有高度同源性,如:咖啡树DXR(CaDXR)、萝芙木DXR(RvDXR);系统进化发育树分析显示,巴戟天MoDXR蛋白与小粒咖啡和栀子的DXR蛋白聚为一类,其亲缘关系最近;由亚细胞定位可知MoDXR基因所编码的蛋白定位于叶绿体上;MoDXR基因5'端启动子序列长度为1 493 bp,包含了与光响应、胁迫响应和激素响应有关的多种调控元件;SDS-PAGE结果表明pET-28a-MoDXR重组蛋白的大小与预期相符,但是以不容性的包涵体的形式表达。成功克隆了MoDXR基因及其启动子序列并对其进行了生物信息学分析和启动子区顺式作用元件分析;后期需要优化MoDXR原核表达体系,为进一步纯化MoDXR蛋白,研究其结构和功能奠定基础。
关键词:    巴戟天      1-脱氧-D-木酮糖-5-磷酸还原异构酶基因      启动子      生物信息学分析      原核表达     
Cloning and analysis of the DXR gene and its promoter in Morinda officinalis
XIE De-jin1, YE You-jie1, YANG De-ming1, ZHANG Ya-xin1, HE Tian-you2, CHEN Li-guang1, ZHENG Yu-shan1,2
1. College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China;
2. College of Landscape, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
Abstract:
The objective of this research was to clone 1-deoxy-D-xylulose 5-phosphate reductoisomerase gene (MoDXR) and its promoter sequence from Morinda officinalis and carry out bioinformatic analysis, cis-acting elements analysis, and prokaryotic expression. On the basis of the MoDXR gene sequence obtained from the M. officinalis transcriptome and with NCBI-ORFfinder analysis, a pair of specific primers were designed, and used for RT-PCR amplification. The promoter region sequence at the 5' end of MoDXR gene was isolated by the genome walking technique. Localization of MoDXR was carried out by subcellular analysis. The prokaryotic expression plasmid pET-28a-MoDXR was constructed and transfected into Escherichia coli BL21(DE3) chemically-competent cells; the recombiant plasmid expressed fusion protein after the induction by IPTG. The full-length cDNA of MoDXR was 2 015 bp, and open reading frame (ORF) size was 1 425 bp, and it encoded 474 amino acid residues and had a molecular mass of 51.27 kD. Sequence comparison with BlastP to the NCBI database revealed that MoDXR had high sequence similarity with many other DXRs, such as Coffea arabica DXR (CaDXR) and Rauvolfia verticillata DXR (RvDXR). A phylogenetic tree revealed that MoDXR had its closest relationship with DXR from Coffea arabica and Gardenia jasminoides. The subcellular localization revealed that MoDXR protein was located on the chloroplast. Plantcare analysis indicated that the promoter region sequence of MoDXR was 1 493 bp, covering multiple light, stress, and hormone-responsive cis-regulatory elements; protein electrophoresis showed that the expressed protein was the anticipated size. This research lays the foundation for further purification and structural and functional characterization of the MoDXR protein.
Key words:    Morinda officinalis    1-deoxy-D-xylulose 5-phosphate reductoisomerase    promoter    bioinformatics analysis    prokaryotic expression   
收稿日期: 2019-09-02
DOI: 10.16438/j.0513-4870.2019-0707
基金项目: 福建省科技创新平台资助(2008Y2001).
通讯作者: 郑郁善,Tel:86-591-83856104,E-mail:zys1960@163.com
Email: zys1960@163.com
相关功能
PDF(1356KB) Free
打印本文
0
作者相关文章
谢德金  在本刊中的所有文章
叶友杰  在本刊中的所有文章
杨德明  在本刊中的所有文章
张娅欣  在本刊中的所有文章
何天友  在本刊中的所有文章
陈礼光  在本刊中的所有文章
郑郁善  在本刊中的所有文章

参考文献:
[1] Huang ZZ. Studies on Chemical Constituents and Their Bioactivities of Morinda officinalis How (巴戟天的化学成分及其生物活性研究)[D]. Guangzhou:Guangzhou University of Chinese Medicine, 2013.
[2] Yang F. Studies on Chemical Constituents of the Roots Morinda officinalis How (巴戟天的化学成分研究)[D]. Tianjin:Tianjin University, 2016.
[3] Ding P, Xu HH. Stardardized Cultiradon Technique of Morinda officinalis How (巴戟天规范化栽培技术)[M]. Guangzhou:Guangdong Science and Technology Press, 2003:1-2.
[4] Liao TS, Min JX, Pan LL, et al. Research progress on iridoid compounds in plants from Rubiaceae[J]. Chin Tradit Herb Drugs (中草药), 2018, 49:1437-1450.
[5] Chinese Pharmacopoeia Committee. Pharmacopoeia of the People's Republic of China. Part 1(中华人民共和国药典)[S]. Beijing:China Medical Science Press, 2010:75.
[6] Yang ZM, Ou YF, Yi YT, et al. Isolation, identification and bioactivity of anthraquinones in Morinda officinalis[J]. Nat Prod Res Dev (天然产物研究与开发), 2019, 31:87-92.
[7] Han YS, Van der Heijden R, Verpoorte R. Biosynthesis of anthraquinones in cell cultures of the Rubiaceae[J]. Plant Cell Tissue & Organ Culture, 2001, 67:201-220.
[8] Han Y, van der Heijden R, Lefeber AWM, et al. Biosynthesis of anthraquinones in cell cultures of Cinchona ‘Robusta’ proceeds via the methylerythritol 4-phosphate pathway[J]. Phytochemistry, 2002, 59:45-55.
[9] Takahashi S, Kuzuyama T, Watanabe H, et al. A 1-deoxy-D-xylulose 5-phosphate reductoisomerase catalyzing the formation of 2-C-methyl-D-erythritol 4-phosphate in an alternative nonmevalonate pathway for terpenoid biosynthesis[J]. Proc Natl Acad Sci U S A, 1998, 95:9879-9884.
[10] Wanke M, Skorupinska-Tudek K, Swiezewska E. Isoprenoid biosynthesis via 1-deoxy-D-xylulose 5-phosphate/2-C-methyl-D-erythritol 4-phosphate (DOXP/MEP) pathway[J]. Acta Biochim Pol, 2001, 48:663-672.
[11] Lorenzo CP, Iván A, Nuria C, et al. Expression and molecular analysis of the Arabidopsis DXR gene encoding 1-deoxy-D-xylulose 5-phosphate reductoisomerase, the first committed enzyme of the 2-C-methyl-D-erythritol 4-phosphate pathway[J]. Plant Physiol, 2002, 129:1581-1591.
[12] Joachim H, Bettina H, Dieter S, et al. Cloning, characterization, and immunolocalization of a mycorrhiza-inducible 1-deoxy-D-xylulose 5-phosphate reductoisomerase in arbuscule-containing cells of maize[J]. Plant Physiol, 2004, 134:614-624.
[13] Rodríguez-Concepción M, Ahumada I, Diez-Juez E, et al. 1-Deoxy-D-xylulose 5-phosphate reductoisomerase and plastid isoprenoid biosynthesis during tomato fruit ripening[J]. Plant J, 2010, 27:213-222.
[14] Zheng H, Jing L, Yao N, et al. Cloning and expression analysis of 1-deoxy-D-xylulose 5-phosphate reductoisomerase (CcDXR1) in Cinnamomum camphora (L.) Presl[J]. Acta Pharm Sin (药学学报), 2016, 51:1494-1501.
[15] Liu PF, Du HY, WuYun TN, et al. Cloning and sequence analysis of 1-deoxy-D-xylulose 5-phosphate reductoisomerase gene cDNA from Eucommia ulmoides[J]. Forest Res (林业科学研究), 2012, 25:195-200.
[16] Veau B, Courtois M, Oudin A, et al. Cloning and expression of cDNAs encoding two enzymes of the MEP pathway in Catharanthus roseus[J]. Biochim Biophys Acta, 2000, 1517:159-163.
[17] Yan X, Zhang L, Wang J, et al. Molecular characterization and expression of 1-deoxy-D-xylulose 5-phosphate reductoisomerase (DXR) gene from Salvia miltiorrhiza[J]. Acta Physiol Plant, 2009, 31:1015-1022.
[18] Tong Y, Su P, Zhao Y, et al. Molecular cloning and characterization of DXS and DXR genes in the terpenoid biosynthetic pathway of Tripterygium wilfordii[J]. Int J Mol Sci, 2015, 16:25516-25535.
[19] Ji A, Jia J, Xu Z, et al. Transcriptome-guided mining of genes involved in crocin biosynthesis[J]. Front Plant Sci, 2017, 8:518.
[20] Htm T, Ramaraj T, Furtado A, et al. Use of a draft genome of coffee (Coffea arabica) to identify SNPs associated with caffeine content[J]. Plant Biotechnol J, 2018, 16:1756-1766.
[21] Peng L, Zhang G, Yang YG, et al. Analysis of transcriptomes and exploring of anthraquinones biosynthetic pathway genes in Rubia cordifolia[J]. Chin Tradit Herb Drugs (中草药), 2018, 49:1890-1896.
[22] Tomohisa H, Shinya T, Shunsuke H, et al. Overexpression of 1-deoxy-D-xylulose-5-phosphate reductoisomerase gene in chloroplast contributes to increment of isoprenoid production[J]. J Biosci Bioeng, 2008, 105:518-526.
[23] Nie M, Gao J, Luo P, et al. CRISPR/Cas9-mediated targeted mutagenesis and function analysis of DXR in Nicotiana tabacum[J]. Tobacco Sci Technol, 2016, 49:1-7.
[24] Seetangnun Y, Sharkey TD, Suvachittanont W. Molecular cloning and characterization of two cDNAs encoding 1-deoxy-D-xylulose 5-phosphate reductoisomerase from Hevea brasiliensis[J]. J Plant Physiol, 2008, 165:991-1002.
[25] Man Z, Liu J, Yu D. Identification and differential expression of two isogenes encoding 1-deoxy-D-xylulose 5-phosphate reductoisomerase in Glycine max[J]. Plant Biotechnol Reports, 2012, 6:363-371.
[26] Klaus R, Silke S, Hassan J, et al. Crystal structure of 1-deoxy-D-xylulose-5-phosphate reductoisomerase, a crucial enzyme in the non-mevalonate pathway of isoprenoid biosynthesis[J]. J Biol Chem, 2002, 277:5378-5384.
[27] Zhang XD, Zhao J, Li CX, et al. Cloning, sequence analysis, and prokaryotic expression of 1-deoxy-D-xylulose 5-phosphate reductoisomerase GrDXR gene in Gentiana rigescens[J]. Chin Tradit Herb Drugs (中草药), 2014, 45:2378-2384.
[28] Xing S, Miao J, Li S, et al. Disruption of the 1-deoxy-D-xylulose-5-phosphate reductoisomerase (DXR) gene results in albino, dwarf and defects in trichome initiation and stomata closure in Arabidopsis[J]. Cell Res, 2010, 20:688-700.
[29] Yan X, Zhang L, Wang J, et al. Molecular characterization and expression of 1-deoxy-D-xylulose 5-phosphate reductoisomerase (DXR) gene from Salvia miltiorrhiza[J]. Acta Physiol Plant, 2009, 31:1015-1022.
[30] Zhang CR, Yang Q, Chen HB, et al. Cloning and expression regulation of 1-deoxy-D-xylulose 5-phosphate reductoisomerase cDNA from Alpinia officiarum[J]. China J Chin Mater Med (中国中药杂志), 2012, 37:3208-3214.
[31] Zhu YH, Dong CM, Zu MH, et al. Cloning and expression analysis of 1-deoxy-D-xylulose 5-phosphate reductoisomerase gene in Rehmannia glutinosa[J]. Plant Physiol J (植物生理学报), 2017, 53:563-571.
相关文献:
1.李瑞博, 崔秀明, 刘玉忠, 吴志刚, 林淑芳, 申业, 黄璐琦.三七病程相关蛋白1基因的克隆与表达分析[J]. 药学学报, 2014,49(1): 124-130