药学学报, 2020, 55(4): 537-553
引用本文:
李敬, 姜向毅, 徐淑静, 崔清华, 杜瑞坤, 康东伟, 展鹏, 荣立军, 刘新泳. 冠状病毒抑制剂研究的药物化学策略[J]. 药学学报, 2020, 55(4): 537-553.
LI Jing, JIANG Xiang-yi, XU Shu-jing, CUI Qing-hua, DU Rui-kun, KANG Dong-wei, ZHAN Peng, RONG Li-jun, LIU Xin-yong. Medicinal chemistry strategies in seeking coronavirus inhibitors[J]. Acta Pharmaceutica Sinica, 2020, 55(4): 537-553.

冠状病毒抑制剂研究的药物化学策略
李敬1,2, 姜向毅1,2, 徐淑静1,2, 崔清华3, 杜瑞坤3, 康东伟1,2, 展鹏1,2, 荣立军4, 刘新泳1,2
1. 山东大学药学院药物化学研究所, 山东 济南 250012;
2. 山东省中比抗病毒创新药物合作研究中心, 山东 济南 250012;
3. 山东中医药大学药学院, 山东 济南 250355;
4. 美国伊利诺伊大学芝加哥校区医学院微生物学与免疫学系, 伊利诺伊州 芝加哥 60612
摘要:
冠状病毒感染所引起的疫情对人类健康造成严重威胁,但目前尚无特异性治疗药物或疫苗。本文从药物化学的视角,精选抗SARS-CoV、MERS-CoV等冠状病毒药物的研究案例,总结了药物发现策略,并分析了新近暴发的SARS-CoV-2感染疫情的药物研究新动向,提出了未来研究的新思路。
关键词:    冠状病毒      药物设计      抑制剂      药物化学策略     
Medicinal chemistry strategies in seeking coronavirus inhibitors
LI Jing1,2, JIANG Xiang-yi1,2, XU Shu-jing1,2, CUI Qing-hua3, DU Rui-kun3, KANG Dong-wei1,2, ZHAN Peng1,2, RONG Li-jun4, LIU Xin-yong1,2
1. Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China;
2. China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, Jinan 250012, China;
3. College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China;
4. Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
Abstract:
The epidemic caused by coronavirus poses a serious threat to human health, but there is no specific drug or vaccine for the treatment of this kind of virus infection. Herein, this article selects typical case studies in recent years and reviews the medicinal chemistry strategies of anti-SARS-CoV, MERS-CoV and other coronavirus drugs from the perspective of medicinal chemistry, and tries to provide some clues to current drug research againstSARS-CoV-2.
Key words:    coronavirus    drug design    inhibitors    medicinal chemistry strategies   
收稿日期: 2020-02-16
DOI: 10.16438/j.0513-4870.2020-0131
基金项目: 国家自然科学基金项目(81420108027,81573347);山东省重点研发计划(2017CXGC1401,2019JZZY021011).
通讯作者: 展鹏,Tel:86-531-88382005,E-mail:zhanpeng1982@sdu.edu.cn;荣立军,E-mail:Lijun@uic.edu;刘新泳,E-mail:xinyongl@sdu.edu.cn
Email: zhanpeng1982@sdu.edu.cn;Lijun@uic.edu;xinyongl@sdu.edu.cn
相关功能
PDF(1248KB) Free
打印本文
0
作者相关文章
李敬  在本刊中的所有文章
姜向毅  在本刊中的所有文章
徐淑静  在本刊中的所有文章
崔清华  在本刊中的所有文章
杜瑞坤  在本刊中的所有文章
康东伟  在本刊中的所有文章
展鹏  在本刊中的所有文章
荣立军  在本刊中的所有文章
刘新泳  在本刊中的所有文章

参考文献:
[1] Perlman S, Netland J. Coronaviruses post-SARS:update on replication and pathogenesis[J]. Nat Rev Microbiol, 2009, 7:439-450.
[2] Stadler K, Masignani V, Eickmann M, et al. SARS--beginning to understand a new virus[J]. Nat Rev Microbiol, 2003, 1:209-218.
[3] Graham RL, Donaldson EF, Baric RS. A decade after SARS:strategies for controlling emerging coronaviruses[J]. Nat Rev Microbiol, 2013, 11:836-848.
[4] de Wit E, van Doremalen N, Falzarano D, et al. SARS and MERS:recent insights into emerging coronaviruses[J]. Nat Rev Microbiol, 2016, 14:523-534.
[5] Du Toit A. Outbreak of a novel coronavirus[J]. Nat Rev Microbiol, 2020. DOI:10.1038/s41579-020-0332-0.
[6] https://mp.weixin.qq.com/s/_O1xQ9ps1G-I6WumfsWu6A.
[7] Zumla A, Chan JF, Azhar EI, et al. Coronaviruses-drug discovery and therapeutic options[J]. Nat Rev Drug Discov, 2016, 15:327-347.
[8] Jiang S, Du L, Shi Z. An emerging coronavirus causing pneumonia outbreak in Wuhan, China:calling for developing therapeutic and prophylactic strategies[J]. Emerg Microbes Infect, 2020, 9:275-277.
[9] Cui J, Li F, Shi ZL. Origin and evolution of pathogenic coronaviruses[J]. Nat Rev Microbiol, 2019, 17:181-192.
[10] Lomniczi B. Biological properties of avian coronavirus RNA[J]. J Gen Virol, 1977, 36:531-533.
[11] Chan JF, Lau SK, To KK, et al. Middle East respiratory syndrome coronavirus:another zoonotic betacoronavirus causing SARS-like disease[J]. Clin Microbiol Rev, 2015, 28:465-522.
[12] Raj VS, Mou H, Smits SL, et al. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC[J]. Nature, 2013, 495:251-254.
[13] Li W, Moore MJ, Vasilieva N. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus[J]. Nature, 2003, 426:450-454.
[14] Du L, He Y, Zhou Y, et al. The spike protein of SARS-CoV--a target for vaccine and therapeutic development[J]. Nat Rev Microbiol, 2009, 7:226-236.
[15] Pillaiyar T, Manickam M, Namasivayam V, et al. An overview of severe acute respiratory syndrome-coronavirus (SARS-CoV) 3CL protease inhibitors:peptidomimetics and small molecule chemotherapy[J]. J Med Chem, 2016, 59:6595-6628.
[16] Wu GC, Zhao T, Kang DW, et al. Overview of recent strategic advances in medicinal chemistry[J]. J Med Chem, 2019, 62:9375-9414.
[17] Zhan P, Pannecouque C, De Clercq E, et al. Anti-HIV drug discovery and development:current innovations and future trends[J]. J Med Chem, 2016, 59:2849-2878.
[18] Zhan P, Liu X. A review of new strategies for the discovery and optimization of lead compounds (Part I)[J]. China Sciencepaper(中国科技论文), 2015, (24):2918-2928.
[19] Delang L, Abdelnabi R, Neyts J, et al. Favipiravir as a potential countermeasure against neglected and emerging RNA viruses[J]. Antiviral Res, 2018, 153:85-94.
[20] Delang L, Segura GN, Tas A, et al. Mutations in the chikungunya virus non-structural proteins cause resistance to favipiravir (T-705), a broad-spectrum antiviral[J]. J Antimicrob Chemother, 2014, 69:2770-2784.
[21] https://mp.weixin.qq.com/s/XJqfQcuAAjggrWlSyov3aw.
[22] https://tech.sina.com.cn/roll/2020-02-18/doc-iimxyqvz3689337.shtml.
[23] Wang ML, Cao RY, Zhang LK, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro[J]. Cell Research, 2020. https://doi.org/10.1038/s41422-020-0282-0.
[24] https://mp.weixin.qq.com/s/sV5pRy4_aCaPNaAh5mtySw.
[25] Holshue ML, Debolt C, Lindquist S, et al. First case of 2019 novel coronavirus in the United States[J]. N Engl J Med, 2020. DOI:10.1056/NEJMoa2001191.
[26] Guo ZR. Remdesivir phase III clinical study developed from sympathetic medication[J]. Acta Pharm Sin (药学学报), 2020, 55:345-348.
[27] https://www.zhihu.com/question/368940464/answer/993040786?clicktime=1580572200.
[28] Ölschläger S, Neyts J, Günther S. Depletion of GTP pool is not the predominant mechanism by which ribavirin exerts its antiviral effect on Lassa virus[J]. Antiviral Res, 2011, 91:89-93.
[29] Ströher U, DiCaro A, Li Y, et al. Severe acute respiratory syndrome-related coronavirus is inhibited by interferon-a[J]. J Infect Dis, 2004, 189:1164-1167.
[30] Chen F, Chan KH, Jiang Y, et al. In vitro susceptibility of 10 clinical isolates of SARS coronavirus to selected antiviral compounds[J]. J Clin Virol, 2004, 31:69-75.
[31] Morgenstern B, Michaelis M, Baer PC, et al. Ribavirin and interferon-β synergistically inhibit SARS-associated coronavirus replication in animal and human cell lines[J]. Biochem Biophys Res Commun, 2005, 326:905-908.
[32] http://www.lnen.cn/jyzx/yxxw/294205.shtml.
[33] Plantone D, Koudriavtseva T. Current and future use of chloroquine and hydroxychloroquine in infectious, immune, neoplastic, and neurological diseases:a mini-review[J]. Clin Drug Investig, 2018, 38:653-671.
[34] Keyaerts E, Li S, Vijgen L, et al. Antiviral activity of chloroquine against human coronavirus OC43 infection in newborn mice[J]. Antimicrob Agents Chemother, 2009, 53:3416-3421.
[35] https://mp.weixin.qq.com/s/qSH9t8ZWtrH9ARAoK1bNnw.
[36] Rolain JM, Colson P, Raoult D. Recycling of chloroquine and its hydroxyl analogue to face bacterial, fungal and viral infections in the 21st century[J]. Int J Antimicrob Agents, 2007, 30:297-308.
[37] Salata C, Calistri A, Parolin C, et al. Antiviral activity of cationic amphiphilic drugs[J]. Expert Rev Anti Infect Ther, 2017, 15:483-492.
[38] https://mp.weixin.qq.com/s/7MqcuC7Cf-zVCKrP64DW1g.
[39] Cohen SA. Use of nitazoxanide as a new therapeutic option for persistent diarrhea:a pediatric perspective[J]. Curr Med Res Opin, 2005, 21:999-1004.
[40] Fox LM, Saravolatz LD. A new thiazolide antiparasitic agent[J]. Clin Infect Dis, 2005, 40:1173-1180.
[41] Rossignol JF. Nitazoxanide:a first-in-class broad-spectrum antiviral agent[J]. Antiviral Res, 2014, 110:94-103.
[42] Rossignol JF, La Frazia S, Chiappa L, et al. Thiazolides, a new class of anti-influenza molecules targeting viral hemagglutinin at the post-translational level[J]. J Biol Chem, 2009, 284:29798-29808.
[43] Cao J, Forrest JC, Zhang X. A screen of the NIH Clinical Collection small molecule library identifies potential anti-coronavirus drugs[J]. Antiviral Res, 2015, 114:1-10.
[44] Rossignol JF. Nitazoxanide, a new drug candidate for the treatment of Middle East respiratory syndrome coronavirus[J]. J Infect Public Health, 2016, 9:227-230.
[45] https://mp.weixin.qq.com/s/Zc3aSkM97h2xoY2-qb1JiA.
[46] Wu CJ, Jan JT, Chen CM, et al. Inhibition of severe acute respiratory syndrome coronavirus replication by niclosamide[J]. Antimicrob Agents Chemother, 2004, 48:2693-2696.
[47] https://www.sohu.com/a/368889098_749286.
[48] Sheahan TP, Sims AC, Leist SR, et al. Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV[J]. Nat Commun, 2020, 11:222.
[49] Arabi YM, Asiri AY, Assiri AM, et al. Treatment of Middle East respiratory syndrome with a combination of lopinavir/ritonavir and interferon-β1b (MIRACLE trial):statistical analysis plan for a recursive two-stage group sequential randomized controlled trial[J]. Trials, 2020, 21:8.
[50] Arabi YM, Alothman A, Balkhy HH, et al. Treatment of Middle East respiratory syndrome with a combination of lopinavir-ritonavir and interferon-β1b (MIRACLE trial):study protocol for a randomized controlled trial[J]. Trials, 2018, 19:81.
[51] Chu CM, Cheng VC, Hung IF, et al. Role of lopinavir/ritonavir in the treatment of SARS:initial virological and clinical findings[J]. Thorax, 2004, 59:252-256.
[52] http://bj.people.com.cn/n2/2020/0204/c233081-33761507.html.
[53] Cheng VC, Chan JF, To KK, et al. Clinical management and infection control of SARS:lessons learned[J]. Antiviral Res, 2013, 100:407-419.
[54] Cinatl J Jr, Michaelis M, Scholz M, et al. Role of interferons in the treatment of severe acute respiratory syndrome[J]. Expert Opin Biol Ther, 2004, 4:827-836.
[55] Falzarano D, de Wit E, Martellaro C, et al. Inhibition of novel beta coronavirus replication by a combination of interferon-alpha 2b and ribavirin[J]. Sci Rep, 2013, 3:1686.
[56] Sun ZG, Zhao TT, Lu N, et al. Research progress of glycyrrhizic acid on antiviral activity[J]. Mini Rev Med Chem, 2019, 19:826-832.
[57] Cinatl JMB, Bauer G,Chandra P, et al. Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus[J]. Lancet, 2003, 361:2045-2046.
[58] Wu CY, Jan JT, Ma SH, et al. Small molecules targeting severe acute respiratory syndrome human coronavirus[J]. Proc Natl Acad Sci U S A, 2004, 101:10012-10017.
[59] Hoever G, Baltina L, Michaelis M, et al. Antiviral activity of glycyrrhizic acid derivatives against SARS-Coronavirus[J]. J Med Chem, 2005, 48:1256-1259.
[60] https://mp.weixin.qq.com/s/Bfvo_E1TBoFDvWX_EKpaYQ.
[61] Xu XT, Chen P, Wang JF, et al. Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission[J]. Sci China Life Sci, 2020,doi:10.1007/s11427-020-1637-5.
[62] Steuber H, Hilgenfeld R. Recent advances in targeting viral proteases for the discovery of novel antivirals[J]. Curr Top Med Chem, 2010, 10:323-345.
[63] Anand K, Ziebuhr J, Wadhwani P, et al. Coronavirus main proteinase (3CLpro) structure:basis for design of anti-SARS drugs[J]. Science, 2003, 300:1763-1767.
[64] Kaiser L, Crump CE, Hayden FG. In vitro activity of pleconaril and AG7088 against selected serotypes and clinical isolates of human rhinoviruses[J]. Antiviral Res, 2000, 47:215-220.
[65] Chou KC, Wei DQ, Zhong WZ, et al. Binding mechanism of coronavirus main proteinase with ligands and its implication to drug design against SARS[J]. Biochem Biophys Res Commun, 2003, 308:148-151.
[66] Chen LR, Wang YC, Lin YW, et al. Synthesis and evaluation of isatin derivatives as effective SARS coronavirus 3CL protease inhibitors[J]. Bioorg Med Chem Lett, 2005, 15:3058-3062.
[67] Zhou L, Liu Y, Zhang W, et al. Isatin compounds as noncovalent SARS coronavirus 3C-like protease inhibitors[J]. J Med Chem, 2006, 49:3440-3443.
[68] Perni RB, Britt SD, Court JC, et al. Inhibitors of hepatitis C virus NS3/4A protease 1. Non-charged tetrapeptide variants[J]. Bioorg Med Chem Lett, 2003, 13:4059-4063.
[69] Perni RB, Farmer LJ, Cottrell KM, et al. Inhibitors of hepatitis C virus NS3/4A protease. Part 3:P2 proline variants[J]. Bioorg Med Chem Lett, 2004, 14:1939-1942.
[70] Anand K, Palm GJ, Mesters JR, et al. Structure of coronavirus main proteinase reveals combination of a chymotrypsin fold with an extra alpha-helical domain[J]. EMBO J, 2002, 21:3213-3224.
[71] Zhang L, Lin D, Kusov Y, et al. Alpha-ketoamides as broad-spectrum inhibitors of coronavirus and enterovirus replication Structure-based design, synthesis, and activity assessment[J]. J Med Chem, 2020. DOI:10.1021/acs.jmedchem.9b01828.
[72] Chen L, Gui C, Luo X, et al. Cinanserin is an inhibitor of the 3C-like proteinase of severe acute respiratory syndrome coronavirus and strongly reduces virus replication in vitro[J]. J Virol, 2005, 79:7095-7103.
[73] Tsai KC, Chen SY, Liang PH, et al. Discovery of a novel family of SARS-CoV protease inhibitors by virtual screening and 3D-QSAR Studies[J]. J Med Chem, 2006, 49:3485-3495.
[74] Lu IL, Mahindroo N, Liang PH, et al. Structure-based drug design and structural biology study of novel nonpeptide inhibitors of severe acute respiratory syndrome coronavirus main protease[J]. J Med Chem, 2006, 49:5154-5161.
[75] Wang J. Structure-Based Drug Design of Novel Nonpeptide Inhibitors of Severe Acute Respiratory Syndrome Coronavirus Main Protease (基于结构针对SARS冠状病毒主蛋白酶的非肽类抑制剂设计)[D]. Tianjin:Nankai University, 2013.
[76] Sun YP. Reasch of Quinolinone Compounds as SARS-CoV 3CLpro Inhibitors (喹啉酮类SARS-CoV 3CL蛋白酶抑制剂研究)[D]. Tianjin:Nankai University, 2013.
[77] Kaeppler U, Stiefl N, Schiller M, et al. A new lead for nonpeptidic active-site-directed inhibitors of the severe acute respiratory syndrome coronavirus main protease discovered by a combination of screening and docking methods[J]. J Med Chem, 2005, 48:6832-6842.
[78] Chen LL. (1) The Discovery of 3CLpro Inhibitor of SARS Coronavirus, (2) The Study of Drug Absorption and Distribution Based on SPR Technique ((1) SARS冠状病毒3CL蛋白酶抑制剂的发现; (2)基于SPR技术的药物吸收和分布性质研究)[D]. Shanghai:Chinese Academy of Sciences Shanghai Institute of Materia Medica, 2006.
[79] Wang P. Screening SARS Coronavirus Main Protease Inhibitors from Natural Products (天然产物中SARS冠状病毒主蛋白酶抑制剂的筛选)[D]. Tianjin:Nankai University, 2012.
[80] Ghosh AK, Takayama J, Rao KV, et al. Severe acute respiratory syndrome coronavirus papain-like novel protease inhibitors:design, synthesis, protein-ligand X-ray structure and biological evaluation[J]. J Med Chem, 2010, 53:4968-4979.
[81] Báez-Santos YM, Barraza SJ, Wilson MW, et al. X-ray structural and biological evaluation of a series of potent and highly selective inhibitors of human coronavirus papain-like proteases[J]. J Med Chem, 2014, 57:2393-2412.
[82] Jacobs J, Grum-Tokars V, Zhou Y, et al. Discovery, synthesis, and structure-based optimization of a series of N-(tert-butyl)-2-(N-arylamido)-2-(pyridin-3-yl) acetamides (ML188) as potent noncovalent small molecule inhibitors of the severe acute respiratory syndrome coronavirus (SARS-CoV) 3CL protease[J]. J Med Chem, 2013, 56:534-546.
[83] Barretto N, Jukneliene D, Ratia K, et al. The papain-like protease of severe acute respiratory syndrome coronavirus has deubiquitinating activity[J]. J Virol, 2005, 79:15189-15198.
[84] Kao RY, Tsui WH, Lee TS, et al. Identification of novel small-molecule inhibitors of severe acute respiratory syndrome-associated coronavirus by chemical genetics[J]. Chem Biol, 2004, 11:1293-1299.
[85] Stockwell BR. Chemical genetics:ligand-based discovery of gene function[J]. Nat Rev Genet, 2000, 1:116-125.
[86] Wen CC, Kuo YH, Jan JT, et al. Specific plant terpenoids and lignoids possess potent antiviral activities against severe acute respiratory syndrome coronavirus[J]. J Med Chem, 2007, 50:4087-4095.
[87] Yang Y, Cao L, Gao H, et al. Discovery, optimization, and target identification of novel potent broad-spectrum antiviral inhibitors[J]. J Med Chem, 2019, 62:4056-4073.
[88] Hilgenfeld R. From SARS to MERS:crystallographic studies on coronaviral proteases enable antiviral drug design[J]. FEBS J, 2014, 281:4085-4096.
[89] Anand K, Ziebuhr J, Wadhwani P, et al. Coronavirus main proteinase (3CLpro) structure:basis for design of anti-SARS drugs[J]. Science, 2003, 300:1763-1767.
[90] Verschueren KH, Pumpor K, Anemüller S, et al. A structural view of the inactivation of the SARS coronavirus main proteinase by benzotriazole esters[J]. Chem Biol, 2008, 15:597-606.
[91] Sun P. Design and Synthesis of the Inhibitor of SARS-CoV Mpro (SARS冠状病毒主蛋白酶抑制剂的设计与合成)[D]. Tianjin:Nankai University, 2012.
[92] Zhu HM. Design, Synthesis and SAR Study of Isatin Derivatives as SARS CoV 3CLpro Inhibitors (靛红类SARS主蛋白酶(SARS CoV 3CLpro)抑制剂的设计、合成与构效关系研究)[D]. Tianjin:Nankai University, 2013.
[93] He W, She PW, Fang Z, et al. The research progress of dynamic combinatorial chemistry[J]. Acta Pharm Sin (药学学报), 2013, 48:814-823.
[94] Schmidt MF, Isidro-Llobet A, Lisurek M, et al. Sensitized detection of inhibitory fragments and iterative development of non-peptidic protease inhibitors by dynamic ligation screening[J]. Angew Chem Int Ed Engl, 2008, 47:3275-3278.
[95] Tan J, Verschueren KH, Anand K, et al. pH-dependent conformational flexibility of the SARS-CoV main proteinase (M(pro)) dimer:molecular dynamics simulations and multiple X-ray structure analyses[J]. J Mol Biol, 2005, 354:25-40.
[96] Wang C, Zhao L, Xia S, et al. De novo design of α-helical lipopeptides targeting viral fusion proteins:a promising strategy for relatively broad-spectrum antiviral drug discovery[J]. J Med Chem, 2018, 61:8734-8745.
[97] Wang C, Xia S, Zhang P, et al. Discovery of hydrocarbon-stapled short alpha-helical peptides as promising middle east respiratory syndrome coronavirus (MERS-CoV) fusion inhibitors[J]. J Med Chem, 2018, 61:2018-2026.
[98] Xia S, Zhu Y, Liu M, et al. Fusion mechanism of 2019-nCoV and fusion inhibitors targeting HR1 domain in spike protein[J]. Cell Mol Immunol, 2020. DOI:10.1038/s41423-020-0374-2.
[99] Song W, Gui M, Wang X, et al. Cryo-EM structure of the SARS coronavirus spike glycoprotein in complex with its host cell receptor ACE2[J]. PLoS Pathog, 2018, 14:e1007236.
[100] Struck AW, Axmann M, Pfefferle S, et al. A hexapeptide of the receptor-binding domain of SARS corona virus spike protein blocks viral entry into host cells via the human receptor ACE2[J]. Antiviral Res, 2012, 94:288-296.
[101] Yeung KS, Yamanaka GA, Meanwell NA. Severe acute respiratory syndrome coronavirus entry into host cells:opportunities for therapeutic intervention[J]. Med Res Rev, 2006, 26:414-433.
[102] Dales NA, Gould AE, Brown JA, et al. Substrate-based design of the first class of angiotensin-converting enzyme-related carboxypeptidase (ACE2) inhibitors[J]. J Am Chem Soc, 2002, 124:11852-11853.
[103] Zhou Q, Yan RH, Zhang YY, et al. Structure of dimeric full-length human ACE2 in complex with B0AT1[J]. BioRxiv, 2020. DOI:https://doi.org/10.1101/2020.02.17.951848.
[104] Luo C, Luo H, Zheng S, et al. Nucleocapsid protein of SARS coronavirus tightly binds to human cyclophilin A[J]. Biochem Biophys Res Commun, 2004, 321:557-565.
[105] Pfefferle S, Schöpf J, Kögl M, et al. The SARS-coronavirus-host interactome:identification of cyclophilins as target for pan-coronavirus inhibitors[J]. PLoS Pathog, 2011, 7:e1002331.
[106] Ni S, Yuan Y, Huang J, et al. Discovering potent small molecule inhibitors of cyclophilin A using de novo drug design approach[J]. J Med Chem, 2009, 52:5295-5298.
[107] https://mp.weixin.qq.com/s/Q9ZNQuqYRD7l165Pjs91Nw.
[108] https://mp.weixin.qq.com/s/ceuUYGfP6lW_x0w9ziPbvA.
[109] http://guba.eastmoney.com/news,002793,901383074.html.
[110] Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin[J]. Nature, 2020. DOI:10.1038/s41586-020-2012-7.
[111] Liu W, Morse JS, Lalonde T, et al. Learning from the past:possible urgent prevention and treatment options for severe acute respiratory infections caused by 2019-nCoV[J]. Chembiochem, 2020. DOI:10.1002/cbic.202000047.
[112] Liu QY, Wang XL. Strategies for the development of drugs targeting novel coronavirus 2019-nCoV[J]. Acta Pharm Sin (药学学报), 2020, 55:181-188.
[113] https://mp.weixin.qq.com/s/_WWUX_xmvbXhryrY3387zg.
[114] http://www.sohu.com/a/369720636_691737.
[115] https://baijiahao.baidu.com/s?id=1657250712581330961&wfr=spider&for=pc.
[116] Wu CR, Liu Y, Yang YY, et al. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods[J]. Acta Pharm Sin B, 2020. DOI:10.1016/j.apsb. 2020.02.008.
[117] Richardson P, Griffin I, Tucker C, et al. Baricitinib as potential treatment for 2019-nCoV acute respiratory disease[J]. Lancet, 2020. https://doi.org/10.1016/S0140-6736(20)30304-4.
相关文献:
1.魏粉菊, 马悦, 俞霁, 贾海永, 刘新泳, 展鹏.基于新靶标的HBV抑制剂研究进展(2):RNase H及其他靶标[J]. 药学学报, 2020,55(4): 566-574
2.修思雨, 张健, 鞠翰, 贾瑞芳, 黄兵, 展鹏, 刘新泳.抗流感病毒药物靶标及其小分子抑制剂的研究进展[J]. 药学学报, 2020,55(4): 611-626
3.宋淑, 高萍, 展鹏, 刘新泳.丙型肝炎病毒抑制剂研究进展[J]. 药学学报, 2020,55(4): 652-668
4.孙彦莹, 左晓芳, 展鹏, 刘新泳.抗腺病毒药物化学研究新进展[J]. 药学学报, 2020,55(4): 720-733
5.张涛, 周忠霞, 展鹏, 刘新泳.抗痘病毒药物化学研究新进展[J]. 药学学报, 2020,55(4): 734-743
6.陶昱岑, 郝霞, 刘新泳, 展鹏.抗肠病毒71型药物化学新进展[J]. 药学学报, 2020,55(4): 744-753
7.姜向毅, 李敬, 魏晓颖, 展鹏, 刘新泳.基孔肯雅病毒抑制剂研究进展[J]. 药学学报, 2020,55(4): 754-762
8.梁瑞鹏, 赵彤, 展鹏, 刘新泳.西尼罗病毒抑制剂研究进展[J]. 药学学报, 2020,55(4): 763-772
9.周忠霞, 孙林, 康东伟, 陈子慧, 唐苗苗, 李思雨, 展鹏, 刘新泳.具有新作用机制的HIV-1逆转录酶抑制剂研究进展[J]. 药学学报, 2018,53(5): 691-700
10.霍志鹏, 左晓芳, 康东伟, 展鹏, 刘新泳.抗艾滋病药物新靶标及其小分子抑制剂的研究进展[J]. 药学学报, 2018,53(3): 356-374
11.贾海永, 俞霁, 刘昕浩, 张健, 展鹏, 刘新泳.HIV-1核壳体蛋白NCp7抑制剂研究新进展[J]. 药学学报, 2017,52(11): 1652-1659
12.夏帅, 王茜, 刘叔文, 陆路, 姜世勃.多肽类中东呼吸系统综合征冠状病毒进入抑制剂的研究进展[J]. 药学学报, 2015,50(12): 1513-1519
13.关鑫磊, 姜凤超, 王悦, 吴鹏飞, 王芳, 陈建国.基于药效团模型的乙酰胆碱酯酶、聚腺苷二磷酸核糖聚合酶-1双靶点分子设计研究[J]. 药学学报, 2014,49(6): 819-823
14.刘 鸿, 展 鹏, 刘新泳.HIV-1逆转录酶和整合酶双靶点抑制剂研究进展[J]. 药学学报, 2013,48(4): 466-476
15.马宇衡,徐波,崔景荣,杨振军,张亮仁,张礼和.三肽四氮唑类20S蛋白酶体抑制剂的设计、合成与活性研究[J]. 药学学报, 2012,47(4): 472-478
16.王 柳, 展 鹏, 刘新泳.结构优化策略在HIV非核苷类逆转录酶抑制剂设计中的应用[J]. 药学学报, 2012,47(11): 1409-1422
17.高丽梅 张胜华 易 红 蒋建东 宋丹青.苯甲酰脲类抗肿瘤β微管蛋白抑制剂药效团模型的构建与应用[J]. 药学学报, 2010,45(4): 462-466
18.汤湧;张大永;吴晓明.作用于Bcl-2家族抗凋亡亚族蛋白的小分子抑制剂的研究进展[J]. 药学学报, 2008,43(7): 669-677
19.祝勇;童心玥;赵玥;陈卉;姜凤超.乙酰胆碱酯酶抑制剂药效团模型的构建[J]. 药学学报, 2008,43(3): 267-276
20.邓小强;向明礼;贾若;杨胜勇.选择性的激酶ATP竞争性抑制剂设计研究进展[J]. 药学学报, 2007,42(12): 1232-1236
21.张文婷;鄢浩;姜凤超.聚腺苷二磷酸核糖聚合酶-1抑制剂药效团模型的建立[J]. 药学学报, 2007,42(3): 279-285