药学学报, 2020, 55(4): 566-574
引用本文:
魏粉菊, 马悦, 俞霁, 贾海永, 刘新泳, 展鹏. 基于新靶标的HBV抑制剂研究进展(2):RNase H及其他靶标[J]. 药学学报, 2020, 55(4): 566-574.
WEI Fen-ju, MA Yue, YU Ji, JIA Hai-yong, LIU Xin-yong, ZHAN Peng. Advances in research on HBV inhibitors based on new targets (2): RNase H and others[J]. Acta Pharmaceutica Sinica, 2020, 55(4): 566-574.

基于新靶标的HBV抑制剂研究进展(2):RNase H及其他靶标
魏粉菊1, 马悦1, 俞霁1, 贾海永2, 刘新泳1, 展鹏1
1. 山东大学药学院药物化学研究所, 化学生物学教育部重点实验室, 山东 济南 250012;
2. 潍坊医学院药学院, 山东 潍坊 261053
摘要:
乙型肝炎已成为影响我国人民身体健康和社会发展的重大疾病之一。乙肝发病率高,病程长,目前已上市的抗乙肝病毒小分子药物无法治愈乙肝,因此,研发安全高效的新型乙肝病毒抑制剂具有重要意义。本综述承接前文关于HBV衣壳蛋白抑制剂的研究进展,精选近几年具有代表性的研究实例,从药物化学的视角总结了抗乙肝病毒药物RNase H类及其他靶标抑制剂的前沿进展。
关键词:    乙型肝炎      药物靶标      RNase H      抑制剂      药物设计     
Advances in research on HBV inhibitors based on new targets (2): RNase H and others
WEI Fen-ju1, MA Yue1, YU Ji1, JIA Hai-yong2, LIU Xin-yong1, ZHAN Peng1
1. Department of Medicinal Chemistry, Key Laboratory of Chemical Biology(Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China;
2. School of Pharmacy, Weifang Medical University, Weifang 261053, China
Abstract:
Hepatitis B has become one of the major diseases which seriously affect people's health and social development. Hepatitis B, with high incidence and long disease course, cannot be cured by approved drugs such as the nucleoside analogues. Therefore, the discovery of safe and efficient novel HBV inhibitors is of great significance. From the point of view of medicinal chemistry, we summarized and discussed current endeavours towards the discovery and development of anti-HBV agents of RNase H and other novel target inhibitors with various scaffolds or distinct mechanisms of action, besides the existing capsid protein inhibitors.
Key words:    hepatitis B    drug target    RNase H    inhibitor    drug design   
收稿日期: 2019-09-02
DOI: 10.16438/j.0513-4870.2019-0711
基金项目: 国家自然科学基金资助项目(81420108027,81573347);山东省重点研发计划(2017CXGC1401,2019JZZY021011);国家自然科学基金资助项目(81903468);山东省自然科学基金资助项目(ZR201807060527).
通讯作者: 刘新泳,Tel:86-531-88380270,E-mail:xinyongl@sdu.edu.cn;展鹏,E-mail:zhanpeng1982@sdu.edu.cn
Email: xinyongl@sdu.edu.cn;zhanpeng1982@sdu.edu.cn
相关功能
PDF(749KB) Free
打印本文
0
作者相关文章
魏粉菊  在本刊中的所有文章
马悦  在本刊中的所有文章
俞霁  在本刊中的所有文章
贾海永  在本刊中的所有文章
刘新泳  在本刊中的所有文章
展鹏  在本刊中的所有文章

参考文献:
[1] Ott JJ, Stevens GA, Groeger J, et al. Global epidemiology of hepatitis B virus infection:new estimates of age-specific HBsAg seroprevalence and endemicity[J]. Vaccine, 2012, 30:2212-2219.
[2] World Health Organization. Hepatitis B vaccines:WHO position paper, July 2017-recommendations[J]. Vaccine, 2019, 37:223-225.
[3] Lok AS, Mcmahon BJ, Brown RS, et al. Antiviral therapy for chronic hepatitis B viral infection in adults:a systematic review and meta-analysis[J]. Hepatology, 2016, 63:284-306.
[4] Choi IG, Yu YG. Interaction and assembly of HBV structural proteins:novel target sites of anti-HBV agents[J]. Infect Disord Drug Targets, 2007, 7:251-256.
[5] Zoulim F. Are novel combination therapies needed for chronic hepatitis B[J]. Antiviral Res, 2012, 96:256-259.
[6] Shih C, Chou SF, Yang CC, et al. Control and eradication strategies of hepatitis B Virus[J]. Trends Microbiol, 2016, 24:739-749.
[7] Ma Y, Wei FJ, Yu J, et al. Advances in research on HBV inhibitors based on new targets (1):capsid protein inhibitors[J]. Acta Pharm Sin (药学学报), 2020, 55:554-565.
[8] Wang XJ, Hu W, Zhang TY, et al. Irbesartan, an FDA approved drug for hypertension and diabetic nephropathy, is a potent inhibitor for hepatitis B virus entry by disturbing Na+-dependent taurocholate cotransporting polypeptide activity[J]. Antiviral Res, 2015, 120:140-146.
[9] Kaneko M, Watashi K, Kamisuki S, et al. A novel tricyclic polyketide, vanitaracin A, specifically inhibits the entry of hepatitis B and D viruses by targeting sodium taurocholate cotransporting polypeptide[J]. J Virol, 2015, 89:11945-11953.
[10] Huang HC, Tao MH, Hung TM, et al. (-)-Epigallocatechin-3-gallate inhibits entry of hepatitis B virus into hepatocytes[J]. Antiviral Res, 2014, 111:100-111.
[11] Watashi K, Sluder A, Daito T, et al. Cyclosporin A and its analogs inhibit hepatitis B virus entry into cultured hepatocytes through targeting a membrane transporter NTCP[J]. Hepatology, 2014, 59:1726-1737.
[12] Nkongolo S, Ni Y, Lempp FA, et al. Cyclosporin A inhibits hepatitis B and hepatitis D virus entry by cyclophilin-independent interference with the NTCP receptor[J]. J Hepatol, 2014, 60:723-731.
[13] Iwamoto M, Watashi K, Tsukuda S, et al. Evaluation and identification of hepatitis B virus entry inhibitors using HepG2 cells overexpressing a membrane transporter NTCP[J]. Biochem Biophys Res Commun, 2014, 443:808-813.
[14] Cai D, Mills C, Yu W, et al. Identification of disubstituted sulfonamide compounds as specific inhibitors of hepatitis B virus covalently closed circular DNA formation[J]. Antimicrob Agents Chemother, 2012, 56:4277-4288.
[15] Lupberger J, Schaedler S, Peiran A, et al. Identification and characterization of a novel bipartite nuclear localization signal in the hepatitis B virus polymerase[J]. World J Gastroenterol, 2013, 19:8000-8010.
[16] Li GQ, Gu HX, Li D, et al. Inhibition of hepatitis B virus cccDNA replication by siRNA[J]. Biochem Biophys Res Commun, 2007, 355:404-408.
[17] Li G, Jiang G, Lu J, et al. Inhibition of hepatitis B virus cccDNA by siRNA in transgenic mice[J]. Cell Biochem Biophys, 2014, 69:649-654.
[18] Li Y, Fu L, Yeo H, et al. Inhibition of hepatitis B virus gene expression and replication by helioxanthin and its derivative[J]. Antivir Chem Chemother, 2005, 16:193-201.
[19] Tseng YP, Kuo YH, Hu CP, et al. The role of helioxanthin in inhibiting human hepatitis B viral replication and gene expression by interfering with the host transcriptional machinery of viral promoters[J]. Antiviral Res, 2008, 77:206-214.
[20] Janmanchi D, Tseng YP, Wang KC, et al. Synthesis and the biological evaluation of arylnaphthalene lignans as anti-hepatitis B virus agents[J]. Bioorg Med Chem, 2010, 18:1213-1226.
[21] Mohebbi A, Lorestani N, Tahamtan A, et al. An overview of hepatitis B virus surface antigen secretion inhibitors[J]. Front Microbiol, 2018, 9:662.
[22] Xu YB, Yang L, Wang GF, et al. Benzimidazole derivative, BM601, a novel inhibitor of hepatitis B virus and HBsAg secretion[J]. Antiviral Res, 2014, 107:6-15.
[23] Al-Mahtab M, Bazinet M, Vaillant A. Safety and efficacy of nucleic acid polymers in monotherapy and combined with immunotherapy in treatment-naive bangladeshi patients with HBeAg+ chronic hepatitis B infection[J]. PLoS One, 2016, 11:e0156667.
[24] Kim SY, Kim H, Kim SW, et al. An effective antiviral approach targeting hepatitis B virus with NJK14047, a novel and selective biphenyl amide p38 mitogen-activated protein kinase inhibitor[J]. Antimicrob Agents Chemother, 2017, 61:e00214-17.
[25] Lin X, Yuan ZH, Wu L, et al. A single amino acid in the reverse transcriptase domain of hepatitis B virus affects virus replication efficiency[J]. J Virol, 2001, 75:11827-11833.
[26] Huber AD, Michailidis E, Tang J, et al. 3-Hydroxypyrimidine-2,4-diones as novel hepatitis B virus antivirals targeting the viral ribonuclease H[J]. Antimicrob Agents Chemother, 2017, 61:e00245-17.
[27] Lomonosova E, Zlotnick A, Tavis JE. Synergistic interactions between hepatitis B virus RNase H antagonists and other inhibitors[J]. Antimicrob Agents Chemother, 2016, 61:e02441-16.
[28] Tramontano E, Corona A, Menendez-Arias L. Ribonuclease H, an unexploited target for antiviral intervention against HIV and hepatitis B virus[J]. Antiviral Res, 2019, 171:104613.
[29] Tavis JE, Lomonosova E. The hepatitis B virus ribonuclease H as a drug target[J]. Antiviral Res, 2015, 118:132-138.
[30] Hu Y, Cheng X, Cao F, et al. β-Thujaplicinol inhibits hepatitis B virus replication by blocking the viral ribonuclease H activity[J]. Antiviral Res, 2013, 99:221-229.
[31] Tavis JE, Cheng X, Hu Y, et al. The hepatitis B virus ribonuclease H is sensitive to inhibitors of the human immunodeficiency virus ribonuclease H and integrase enzymes[J]. PLoS Pathog, 2013, 9:e1003125.
[32] Tavis JE, Zoidis G, Meyers MJ, et al. Chemical approaches to inhibiting the hepatitis B virus ribonuclease H[J]. ACS Infect Dis, 2019, 5:655-658.
[33] Massari S, Corona A, Distinto S, et al. From cycloheptathiophene-3-carboxamide to oxazinone-based derivatives as allosteric HIV-1 ribonuclease H inhibitors[J]. J Enzyme Inhib Med Chem, 2019, 34:55-74.
[34] Li MD, Bronson DL, Lemke TD, et al. Phylogenetic analyses of 55 retroelements on the basis of the nucleotide and product amino acid sequences of the pol gene[J]. Mol Biol Evol, 1995, 12:657-670.
[35] Lu G, Lomonosova E, Cheng X, et al. Hydroxylated tropolones inhibit hepatitis B virus replication by blocking viral ribonuclease H activity[J]. Antimicrob Agents Chemother, 2015, 59:1070-1079.
[36] Edwards TC, Ponzar NL, Tavis JE. Shedding light on RNase H:a promising target for hepatitis B virus (HBV)[J]. Expert Opin Ther Targets, 2019, 23:559-563.
[37] Budihas SR, Gorshkova I, Gaidamakov S, et al. Selective inhibition of HIV-1 reverse transcriptase-associated ribonuclease H activity by hydroxylated tropolones[J]. Nucleic Acids Res, 2005, 33:1249-1256.
[38] Beilhartz GL, Wendeler M, Baichoo N, et al. HIV-1 reverse transcriptase can simultaneously engage its DNA/RNA substrate at both DNA polymerase and RNase H active sites:implications for RNase H inhibition[J]. J Mol Biol, 2009, 388:462-474.
[39] Farias RV, Vargas DA, Castillo AE, et al. Expression of an Mg2+-dependent HIV-1 RNase H construct for drug screening[J]. Antimicrob Agents Chemother, 2011, 55:4735-4741.
[40] Lomonosova E, Daw J, Garimallaprabhakaran AK, et al. Efficacy and cytotoxicity in cell culture of novel α-hydroxytropolone inhibitors of Hepatitis B virus ribonuclease H[J]. Antiviral Res, 2017, 144:164-172.
[41] Chang LJ, Hirsch RC, Ganem D, et al. Effects of insertional and point mutations on the functions of the duck hepatitis B virus polymerase[J]. J Virol, 1990, 64:5553-5558.
[42] Edwards TC, Lomonosova E, Patel JA, et al. Inhibition of hepatitis B virus replication by N-hydroxyisoquinolinediones and related polyoxygenated heterocycles[J]. Antiviral Res, 2017, 143:205-217.
[43] Edwards TC, Mani N, Dorsey B, et al. Inhibition of HBV replication by N-hydroxyisoquinolinedione and N-hydroxypyridinedione ribonuclease H inhibitors[J]. Antiviral Res, 2019, 164:70-80.
[44] Billamboz M, Suchaud V, Bailly F, et al. 2-Hydroxyisoquinoline-1,3(2H,4H)-diones (HIDs) as human immunodeficiency virus type 1 integrase inhibitors:influence of the alkylcarboxamide substitution of position 4[J]. Eur J Med Chem, 2016, 117:256-268.
[45] Suchaud V, Bailly F, Lion C, et al. Investigation of a novel series of 2-hydroxyisoquinoline-1,3(2H,4H)-diones as human immunodeficiency virus type 1 integrase inhibitors[J]. J Med Chem, 2014, 57:4640-4660.
[46] Desimmie BA,Demeulemeester J, Suchaud V, et al. 2-Hydroxyisoquinoline-1,3(2H,4H)-diones (HIDs), novel inhibitors of HIV integrase with a high barrier to resistance[J]. ACS ChemBiol, 2013, 8:1187-1194.
[47] Cai CW, Lomonosova E, Moran EA, et al. Hepatitis B virus replication is blocked by a 2-hydroxyisoquinoline-1,3(2H,4H)-dione (HID) inhibitor of the viral ribonuclease H activity[J]. Antiviral Res, 2014, 108:48-55.
[48] Perez C, Daniel KB, Cohen SM. Evaluating prodrug strategies for esterase-triggered release of alcohols[J]. ChemMedChem, 2013, 8:1662-1667.
[49] Wen YM, Lin X, Ma ZM. Exploiting new potential targets for anti-hepatitis B virus drugs[J]. Curr Drug Targets Infect Disord, 2003, 3:241-246.
[50] Asif-Ullah M, Choi KJ, Choi KI, et al. Identification of compounds that inhibit the interaction between core and surface protein of hepatitis B virus[J]. Antiviral Res, 2006, 70:85-90.
[51] Gane EJ, Lim YS, Gordon SC, et al. The oral toll-like receptor-7 agonist GS-9620 in patients with chronic hepatitis B virus infection[J]. J Hepatol, 2015, 63:320-328.
[52] Wang YP, Liu F, He HW, et al. Heat stress cognate 70 host protein as a potential drug target against drug resistance in hepatitis B virus[J]. Antimicrob Agents Chemother, 2010, 54:2070-2077.
[53] Gao LM, Han YX, Wang YP, et al. Design and synthesis of oxymatrine analogues overcoming drug resistance in hepatitis B virus through targeting host heat stress cognate 70[J]. J Med Chem, 2011, 54:869-876.
[54] Du NN, Li X, Wang YP, et al. Synthesis, structure-activity relationship and biological evaluation of novel N-substituted matrinic acid derivatives as host heat-stress cognate 70(Hsc70) down-regulators[J]. Bioorg Med Chem Lett, 2011, 21:4732-4735.
[55] Han X, Zhou C, Jiang M, et al. Discovery of RG7834:the first-in-class selective and orally available small molecule hepatitis B virus expression inhibitor with novel mechanism of action[J]. J Med Chem, 2018, 61:10619-10634.
[56] Mueller H, Wildum S, Luangsay S, et al. A novel orally available small molecule that inhibits hepatitis B virus expression[J]. J Hepatol, 2018, 68:412-420.
[57] Mueller H, Lopez A, Tropberger P, et al. PAPD5/7 are host factors that are required for hepatitis B virus RNA stabilization[J]. Hepatology, 2019, 69:1398-1411.
[58] Lv ZL, Sheng CQ, Wang TT, et al. Design, synthesis, and antihepatitis B virus activities of novel 2-pyridone derivatives[J]. J Med Chem, 2010, 53:660-668.
[59] Wispelaere M, Du G, Donovan KA, et al. Small molecule degraders of the hepatitis C virus protease reduce susceptibility to resistance mutations[J]. Nat Commun, 2019, 10:3468.
[60] Chan AH, Lee WG, Spasov KA, et al. Covalent inhibitors for eradication of drug-resistant HIV-1 reverse transcriptase:from design to protein crystallography[J]. Proc Natl Acad Sci U S A, 2017, 114:9725-9730.
[61] Windsor IW, Palte MJ, Lukesh JC, et al. Sub-picomolar inhibition of HIV-1 protease with a boronic acid[J]. J Am Chem Soc, 2018, 140:14015-14018.
相关文献:
1.李敬, 姜向毅, 徐淑静, 崔清华, 杜瑞坤, 康东伟, 展鹏, 荣立军, 刘新泳.冠状病毒抑制剂研究的药物化学策略[J]. 药学学报, 2020,55(4): 537-553
2.马悦, 魏粉菊, 俞霁, 贾海永, 刘新泳, 展鹏.基于新靶标的HBV抑制剂研究进展(1):衣壳蛋白抑制剂[J]. 药学学报, 2020,55(4): 554-565
3.魏文秀, 荆兰兰, 刘新泳, 展鹏.抗疱疹病毒药物化学研究新进展[J]. 药学学报, 2020,55(4): 575-584
4.李敬, 刘新泳, 展鹏.人巨细胞病毒抑制剂研究进展[J]. 药学学报, 2020,55(4): 585-596
5.修思雨, 张健, 鞠翰, 贾瑞芳, 黄兵, 展鹏, 刘新泳.抗流感病毒药物靶标及其小分子抑制剂的研究进展[J]. 药学学报, 2020,55(4): 611-626
6.董悦, 展鹏, 刘新泳.抗诺如病毒药物及其疫苗研究新进展[J]. 药学学报, 2020,55(4): 640-651
7.宋淑, 高萍, 展鹏, 刘新泳.丙型肝炎病毒抑制剂研究进展[J]. 药学学报, 2020,55(4): 652-668
8.孙彦莹, 左晓芳, 展鹏, 刘新泳.抗腺病毒药物化学研究新进展[J]. 药学学报, 2020,55(4): 720-733
9.张涛, 周忠霞, 展鹏, 刘新泳.抗痘病毒药物化学研究新进展[J]. 药学学报, 2020,55(4): 734-743
10.陶昱岑, 郝霞, 刘新泳, 展鹏.抗肠病毒71型药物化学新进展[J]. 药学学报, 2020,55(4): 744-753
11.梁瑞鹏, 赵彤, 展鹏, 刘新泳.西尼罗病毒抑制剂研究进展[J]. 药学学报, 2020,55(4): 763-772
12.周忠霞, 孙林, 康东伟, 陈子慧, 唐苗苗, 李思雨, 展鹏, 刘新泳.具有新作用机制的HIV-1逆转录酶抑制剂研究进展[J]. 药学学报, 2018,53(5): 691-700
13.霍志鹏, 左晓芳, 康东伟, 展鹏, 刘新泳.抗艾滋病药物新靶标及其小分子抑制剂的研究进展[J]. 药学学报, 2018,53(3): 356-374
14.贾海永, 俞霁, 刘昕浩, 张健, 展鹏, 刘新泳.HIV-1核壳体蛋白NCp7抑制剂研究新进展[J]. 药学学报, 2017,52(11): 1652-1659
15.关鑫磊, 姜凤超, 王悦, 吴鹏飞, 王芳, 陈建国.基于药效团模型的乙酰胆碱酯酶、聚腺苷二磷酸核糖聚合酶-1双靶点分子设计研究[J]. 药学学报, 2014,49(6): 819-823
16.刘 鸿, 展 鹏, 刘新泳.HIV-1逆转录酶和整合酶双靶点抑制剂研究进展[J]. 药学学报, 2013,48(4): 466-476
17.马宇衡,徐波,崔景荣,杨振军,张亮仁,张礼和.三肽四氮唑类20S蛋白酶体抑制剂的设计、合成与活性研究[J]. 药学学报, 2012,47(4): 472-478
18.杨 颖, 曹颖莉, 刘海洋, 严 欢, 郭 颖.银线草醇F: 一种新结构类型HIV-1逆转录酶RNase H活性抑制剂[J]. 药学学报, 2012,47(8): 1011-1016
19.王 柳, 展 鹏, 刘新泳.结构优化策略在HIV非核苷类逆转录酶抑制剂设计中的应用[J]. 药学学报, 2012,47(11): 1409-1422
20.高丽梅 张胜华 易 红 蒋建东 宋丹青.苯甲酰脲类抗肿瘤β微管蛋白抑制剂药效团模型的构建与应用[J]. 药学学报, 2010,45(4): 462-466
21.汤湧;张大永;吴晓明.作用于Bcl-2家族抗凋亡亚族蛋白的小分子抑制剂的研究进展[J]. 药学学报, 2008,43(7): 669-677
22.祝勇;童心玥;赵玥;陈卉;姜凤超.乙酰胆碱酯酶抑制剂药效团模型的构建[J]. 药学学报, 2008,43(3): 267-276
23.邓小强;向明礼;贾若;杨胜勇.选择性的激酶ATP竞争性抑制剂设计研究进展[J]. 药学学报, 2007,42(12): 1232-1236
24.张文婷;鄢浩;姜凤超.聚腺苷二磷酸核糖聚合酶-1抑制剂药效团模型的建立[J]. 药学学报, 2007,42(3): 279-285