药学学报, 2020, 55(4): 575-584
引用本文:
魏文秀, 荆兰兰, 刘新泳, 展鹏. 抗疱疹病毒药物化学研究新进展[J]. 药学学报, 2020, 55(4): 575-584.
WEI Wen-xiu, JING Lan-lan, LIU Xin-yong, ZHAN Peng. New progress in medicinal chemistry of anti-herpesviruses drug research[J]. Acta Pharmaceutica Sinica, 2020, 55(4): 575-584.

抗疱疹病毒药物化学研究新进展
魏文秀, 荆兰兰, 刘新泳, 展鹏
山东大学药学院药物化学研究所, 化学生物学教育部重点实验室, 山东 济南 250012
摘要:
目前临床使用最广泛的抗疱疹病毒药物为阿昔洛韦(acyclovir,ACV)及其衍生物,但耐药性问题的出现迫使人们不断寻找新的抗疱疹病毒药物。随着疱疹病毒的生物学特征和致病机制的深入研究以及新药设计与筛选技术的快速发展,越来越多的抗疱疹病毒新靶标和新抑制剂被发现,这使疱疹感染疾病的治疗有了更多选择。本综述总结了近年来在抗疱疹病毒药物研究领域的代表性研究成果。
关键词:    疱疹病毒      药物靶标      人类疱疹病毒      抗疱疹病毒药物      药物设计     
New progress in medicinal chemistry of anti-herpesviruses drug research
WEI Wen-xiu, JING Lan-lan, LIU Xin-yong, ZHAN Peng
Department of Medicinal Chemistry, Key Laboratory of Chemical Biology(Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
Abstract:
At present, the most widely used anti-herpesviruses drugs are acyclovir (ACV) and its derivatives, but the emergence of herpesvirus resistance to these drugs forces people to continue to seek new anti-herpesviruses drugs. More and more new targets and inhibitors against herpesviruses have been discovered, one reason is the in-depth study of the biological characteristics and pathogenic mechanism of herpesviruses, and the other is the rapid development of new drug design and screening technology. Therefore, there are more options for the treatment of herpes infections. This review summarizes the representative achievements in the field of anti-herpesviruses drugs in recent years.
Key words:    herpesviruses    drug target    HHV    anti-herpesviruses drug    drug design   
收稿日期: 2019-09-06
DOI: 10.16438/j.0513-4870.2019-0723
基金项目: 国家自然科学基金资助项目(81420108027,81573347);山东省重点研发计划(2017CXGC1401,2019JZZY021011).
通讯作者: 展鹏,Tel:86-531-88382005,E-mail:zhanpeng1982@sdu.edu.cn;刘新泳,E-mail:xinyongl@sdu.edu.cn
Email: zhanpeng1982@sdu.edu.cn;xinyongl@sdu.edu.cn
相关功能
PDF(890KB) Free
打印本文
0
作者相关文章
魏文秀  在本刊中的所有文章
荆兰兰  在本刊中的所有文章
刘新泳  在本刊中的所有文章
展鹏  在本刊中的所有文章

参考文献:
[1] Hogestyn JM, Mock DJ, Mayer-Proschel M. Contributions of neurotropic human herpesviruses herpes simplex virus 1 and human herpesvirus 6 to neurodegenerative disease pathology[J]. Neural Regen Res, 2018, 13:211-221.
[2] Frobert E, Burrel S, Ducastelle-Lepretre S, et al. Resistance of herpes simplex viruses to acyclovir:an update from a ten-year survey in France[J]. Antiviral Res, 2014, 111:36-41.
[3] Wilson SS, Fakioglu E, Herold BC. Novel approaches in fighting herpes simplex virus infections[J]. Expert Rev Anti Infect Ther, 2009, 7:559-568.
[4] Gable JE, Acker TM, Craik CS. Current and potential treatments for ubiquitous but neglected herpesvirus infection[J]. Chem Rev, 2014, 114:11382-11412.
[5] Hargett D, Shenk TE. Experimental human cytomegalovirus latency in CD14+ monocytes[J]. Proc Natl Acad Sci U S A, 2010, 107:20039-20044.
[6] Goodrum F, Reeves M, Sinclair J, et al. Human cytomegalovirus sequences expressed in latently infected individuals promote a latent infection in vitro[J]. Blood, 2007, 110:937-945.
[7] Shu M, Taddeo B, Roizman B. The nuclear-cytoplasmic shuttling of virion host shutoff RNase is enabled by pUL47 and an embedded nuclear export signal and defines the sites of degradation of AU-rich and stable cellular mRNAs[J]. J Virol, 2013, 87:13569-13578.
[8] Sattentau Q. HIV's gut feeling[J]. Nat Immunol, 2008, 9:225-227.
[9] Newcomb WW, Homa FL, Brown JC. Involvement of the portal at an early step in herpes simplex virus capsid assembly[J]. J Virol, 2005, 79:10540-10546.
[10] Hodin TL, Najrana T, Yates JL. Efficient replication of Epstein-Barr virus-derived plasmids requires tethering by EBNA1 to host chromosomes[J]. J Virol, 2013, 87:13020-13028.
[11] Mücke K, Paulus C, Bernhardt K, et al. Human cytomegalovirus major immediate early 1 protein targets host chromosomes by docking to the acidic pocket on the nucleosome surface[J]. J Virol, 2013, 88:1228-1248.
[12] Hagemeier SR, Dickerson SJ, Meng Q, et al. Sumoylation of the Epstein-Barr virus BZLF1 protein inhibits its transcriptional activity and is regulated by the virus-encoded protein kinase[J]. J Virol, 2010, 84:4383-4394.
[13] Talarico CL, Burnette TC, Miller WH, et al. Acyclovir is phosphorylated by the human cytomegalovirus UL97 protein[J]. Antimicrob Agents Chemother, 1999, 43:1941-1946.
[14] Keam SJ, Chapman TM, Figgitt DP. Brivudin (bromovinyl deoxyuridine)[J]. Drugs, 2004, 64:2091-2099.
[15] De Clercq E. Potential of acyclic nucleoside phosphonates in the treatment of DNA virus and retrovirus infections[J]. Expert Rev Anti Infect Ther, 2003, 1:21-43.
[16] De Clercq E. Potential antivirals and antiviral strategies against SARS coronavirus infections[J]. Expert Rev Anti Infect Ther, 2006, 4:291-302.
[17] Rouphael NG, Hurwitz SJ, Hart M, et al. Phase 1b trial to evaluate the safety and pharmacokinetics of multiple ascending doses of filociclovir (MBX-400, cyclopropavir) in healthy volunteers[J]. Antimicrob Agents Chemother, 2019, 63:e00717-00719.
[18] Sahu PK, Umme T, Yu J, et al. Selenoacyclovir and selenoganciclovir:discovery of a new template for antiviral agents[J]. J Med Chem, 2015, 58:8734-8738.
[19] Tyring SK, Plunkett S, Scribner AR, et al. Valomaciclovir versus valacyclovir for the treatment of acute herpes zoster in immunocompetent adults:a randomized, double-blind, active-controlled trial[J]. J Med Virol, 2012, 84:1224-1232.
[20] Krasnov VP, Musiyak VV, Vozdvizhenskaya OA, et al. N-[ω-(Purin-6-yl)aminoalkanoyl] derivatives of chiral heterocyclic amines as promising anti-herpesvirus agents[J]. Eur J Org Chem, 2019, 30:4811-4821.
[21] De Clercq E, Sakuma T, Baba M, et al. Antiviral activity of phosphonylmethoxyalkyl derivatives of purine and pyrimidines[J]. Antiviral Res, 1987, 8:261-272.
[22] Luo M, Groaz E, De Jonghe S, et al. Amidate prodrugs of cyclic 9-(S)-[3-hydroxy-2-(phosphonomethoxy)propyl]adenine with potent anti-herpesvirus activity[J]. ACS Med Chem Lett, 2018, 9:381-385.
[23] Crute JJ, Mocarski ES, Lehman IR. A DNA helicase induced by herpes simplex virus type 1[J]. Nucleic Acids Res, 1988, 16:6585-6596.
[24] Himaki T, Masui Y, Chono K, et al. Efficacy of ASP2151, a helicase-primase inhibitor, against thymidine kinase-deficient herpes simplex virus type 2 infection in vitro and in vivo[J]. Antiviral Res, 2011, 93:301-304.
[25] Kusawake T, Kowalski D, Takada A, et al. The influence of hepatic and renal impairment on the pharmacokinetics of a treatment for herpes zoster, amenamevir (ASP2151):Phase 1, open-label, single-dose, parallel-group studies[J]. Adv Ther, 2017, 34:2612-2624.
[26] Yajima M, Yamada H, Takemoto M, et al. Profile of anti-herpetic action of ASP2151(amenamevir) as a helicase-primase inhibitor[J]. Antiviral Res, 2017, 139:95-101.
[27] Bongarzone S, Nadal M, Kaczmarska Z, et al. Structure-driven discovery of α,γ-diketoacid inhibitors against UL89 herpesvirus terminase[J]. ACS Omega, 2018, 3:8497-8505.
[28] Dehghanpir SD, Birkenheuer CH, Yang K, et al. Broad anti-herpesviral activity of α-hydroxytropolones[J]. Vet Microbiol, 2018, 214:125-131.
[29] Berkowitz AJ, Franson AD, GazquezCassals A, et al. Importance of lipophilicity for potent anti-herpes simplex virus-1 activity of α-hydroxytropolones[J]. MedChemComm, 2019, 10:1173-1176.
[30] van Zeijl M, Fairhurst J, Jones TR, et al. Novel class of thiourea compounds that inhibit herpes simplex virus type 1 DNA cleavage and encapsidation:resistance maps to the UL6 gene[J]. J Virol, 2000, 74:9054-9061.
[31] Newcomb WW, Brown JC. Inhibition of herpes simplex virus replication by WAY-150138:assembly of capsids depleted of the portal and terminase proteins involved in DNA encapsidation[J]. J Virol, 2002, 76:10084-10088.
[32] Heldwein EE, Krummenacher C. Entry of herpesviruses into mammalian cells[J]. Cell Mol Life Sci, 2008, 65:1653-1668.
[33] Pachota M, Klysik K, Synowiec A, et al. Inhibition of herpes simplex viruses by cationic dextran derivatives[J]. J Med Chem, 2017, 60:8620-8630.
[34] Gangji RN, Sankaranarayanan NV, Elste J, et al. Inhibition of herpes simplex virus-1 entry into human cells by nonsaccharide glycosaminoglycan mimetics[J]. ACS Med Chem Lett, 2018, 9:789-802.
[35] Zhang HG, Hanson LA. Deletion of thymidine kinase gene attenuates channel catfish herpesvirus while maintaining infectivity[J]. Virology, 1995, 209:658-663.
[36] Cristofoli WA, Wiebe LI, De Clercq E, et al. 5-alkynyl analogs of arabinouridine and 2'-deoxyuridine:cytostatic activity against herpes simplex virus and varicella-zoster thymidine kinase gene-transfected cells[J]. J Med Chem, 2007, 50:2851-2857.
[37] Kirsch P, Jakob V, Oberhausen K, et al. Fragment-based discovery of a qualified hit targeting the latency-associated nuclear antigen of the oncogenic Kaposi's Sarcoma-associated herpesvirus/human herpesvirus 8[J]. J Med Chem, 2019, 62:3924-3939.
[38] Acker TM, Gable JE, Bohn MF, et al. Allosteric inhibitors, crystallography, and comparative analysis reveal network of coordinated movement across human herpesvirus proteases[J]. J Am Chem Soc, 2017, 139:11650-11653.
[39] Malumbres M, Barbacid M. Cell cycle, CDKs and cancer:a changing paradigm[J]. Nat Rev Cancer, 2009, 9:153-166.
[40] Kohoutek J, Blazek D. Cyclin K goes with CDK12 and CDK13[J]. Cell Div, 2012, 7:12.
[41] Evers DL, Breitenbach JM, Borysko KZ, et al. Inhibition of cyclin-dependent kinase 1 by purines and pyrrolo[2,3-d]pyrimidines does not correlate with antiviral activity[J]. Antimicrob Agents Chemother, 2002, 46:2470-2476.
[42] Schang LM. Cyclin-dependent kinases as cellular targets for antiviral drugs[J]. J Antimicrob Chemother, 2002, 50:779-792.
[43] Rechter S, Scott GM, Eickhoff J, et al. Cyclin-dependent kinases phosphorylate the cytomegalovirus RNA export protein pUL69 and modulate its nuclear localization and activity[J]. J Biol Chem, 2009, 284:8605-8613.
[44] Ou M, Sandri-Goldin RM. Inhibition of CDK9 during herpes simplex virus 1 infection impedes viral transcription[J]. PLoS One, 2013, 8:e79007.
[45] Thomas JP, Tutsch KD, Cleary JF, et al. Phase I clinical and pharmacokinetic trial of the cyclin-dependent kinase inhibitor flavopiridol[J]. Cancer Chemother Pharmacol, 2002, 50:465-472.
[46] Yamamoto M, Onogi H, Kii I, et al. CDK9 inhibitor FIT-039 prevents replication of multiple DNA viruses[J]. J Clin Invest, 2014, 124:3479-3488.
[47] Nomura T, Sumi E, Egawa G, et al. The efficacy of a cyclin dependent kinase 9(CDK9) inhibitor, FIT039, on verruca vulgaris:study protocol for a randomized controlled trial[J]. Trials, 2019, 20:489.
[48] Wang L, Damania B. Kaposi's sarcoma-associated herpesvirus confers a survival advantage to endothelial cells[J]. Cancer Res, 2008, 68:4640-4648.
[49] Yang M, Huang L, Li X, et al. Chloroquine inhibits lytic replication of Kaposi's sarcoma-associated herpesvirus by disrupting mTOR and p38-MAPK activation[J]. Antiviral Res, 2016, 133:223-233.
[50] Sharma-Walia N, Paul AG, Bottero V, et al. Kaposi's sarcoma associated herpes virus (KSHV) induced COX-2:a key factor in latency, inflammation, angiogenesis, cell survival and invasion[J]. PLoS Pathog, 2010, 6:e1000777.
相关文献:
1.魏粉菊, 马悦, 俞霁, 贾海永, 刘新泳, 展鹏.基于新靶标的HBV抑制剂研究进展(2):RNase H及其他靶标[J]. 药学学报, 2020,55(4): 566-574
2.李敬, 刘新泳, 展鹏.人巨细胞病毒抑制剂研究进展[J]. 药学学报, 2020,55(4): 585-596
3.修思雨, 张健, 鞠翰, 贾瑞芳, 黄兵, 展鹏, 刘新泳.抗流感病毒药物靶标及其小分子抑制剂的研究进展[J]. 药学学报, 2020,55(4): 611-626
4.宋淑, 高萍, 展鹏, 刘新泳.丙型肝炎病毒抑制剂研究进展[J]. 药学学报, 2020,55(4): 652-668
5.孙彦莹, 左晓芳, 展鹏, 刘新泳.抗腺病毒药物化学研究新进展[J]. 药学学报, 2020,55(4): 720-733
6.周忠霞, 孙林, 康东伟, 陈子慧, 唐苗苗, 李思雨, 展鹏, 刘新泳.具有新作用机制的HIV-1逆转录酶抑制剂研究进展[J]. 药学学报, 2018,53(5): 691-700
7.霍志鹏, 左晓芳, 康东伟, 展鹏, 刘新泳.抗艾滋病药物新靶标及其小分子抑制剂的研究进展[J]. 药学学报, 2018,53(3): 356-374