药学学报, 2020, 55(4): 585-596
引用本文:
李敬, 刘新泳, 展鹏. 人巨细胞病毒抑制剂研究进展[J]. 药学学报, 2020, 55(4): 585-596.
LI Jing, LIU Xin-yong, ZHAN Peng. Advances in human cytomegalovirus inhibitors[J]. Acta Pharmaceutica Sinica, 2020, 55(4): 585-596.

人巨细胞病毒抑制剂研究进展
李敬, 刘新泳, 展鹏
山东大学药学院药物化学研究所, 化学生物学教育部重点实验室, 山东 济南 250012
摘要:
目前的抗人巨细胞病毒(human cytomegalovirus,HCMV)感染药物存在活性中等、生物利用度差等问题,迫使人们不断研发新的抗HCMV药物。随着HCMV的致病机制和生物学特征的不断研究以及新的药物设计策略的快速发展,新一代抗HCMV感染的靶点和药物陆续被发现。本综述精选近几年最具代表性的研究实例,从药物化学角度总结了抗HCMV药物的新靶标及其研究进展。
关键词:    人巨细胞病毒      药物靶标      复制周期      药物设计     
Advances in human cytomegalovirus inhibitors
LI Jing, LIU Xin-yong, ZHAN Peng
Department of Medicinal Chemistry, Key Laboratory of Chemical Biology(Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
Abstract:
At present, the anti-HCMV (human cytomegalovirus) drugs have some problems, such as moderate activity, poor bioavailability, which urge people to develop new anti-HCMV drugs. With the continuous study on the pathogenesis and biological characteristics of HCMV and the rapid development of new drug design strategies, new generation of anti-HCMV targets and drugs have been identified. This review selects the most representative research examples in recent years, and summarizes the new targets and research progress of anti-HCMV drugs from the perspective of medicinal chemistry.
Key words:    human cytomegalovirus    drug target    replication cycle    drug design   
收稿日期: 2019-09-09
DOI: 10.16438/j.0513-4870.2019-0729
基金项目: 国家自然科学基金资助项目(81420108027);2017年山东省重点研发计划(2017CXGC1401,2019JZZY021011).
通讯作者: 展鹏,Tel:86-531-88382005,E-mail:zhanpeng1982@sdu.edu.cn;刘新泳,E-mail:xinyongl@sdu.edu.cn
Email: zhanpeng1982@sdu.edu.cn;xinyongl@sdu.edu.cn
相关功能
PDF(1020KB) Free
打印本文
0
作者相关文章
李敬  在本刊中的所有文章
刘新泳  在本刊中的所有文章
展鹏  在本刊中的所有文章

参考文献:
[1] Bongarzone S, Nadal M, Kaczmarska Z, et al. Structure-driven discovery of α,γ-diketoacid inhibitors against UL89 herpesvirus terminase[J]. ACS Omega, 2018, 3:8497-8505.
[2] Foglierini M, Marcandalli J, Perez L. HCMV envelope glycoprotein diversity demystified[J]. Front Microbiol, 2019, 10:1005.
[3] Andrei G, De Clercq E, Snoeck R. Infect disord drug targets[J]. Infectious Disorders-Drug Targets, 2009, 9:201-222.
[4] Kenneson A, Cannon MJ. Review and meta-analysis of the epidemiology of congenital cytomegalovirus (CMV) infection[J]. Rev Med Virol, 2017, 17:253-276.
[5] Britt WJ, Prichard MN. New therapies for human cytomegalovirus infections[J]. Antiviral Res, 2018, 159:153-174.
[6] Collins-McMillen D, Rak M, Buehler JC, et al. Alternative promoters drive human cytomegalovirus reactivation from latency[J]. Proc Natl Acad Sci U S A, 2019, 116:17492-17497.
[7] Liu F, Zhou ZH, Arvin A, et al. Comparative Virion Structures of Human Herpesviruses[M]. Cambridge:Cambridge University Press, 2007.
[8] Buscher N, Paulus C, Nevels M, et al. The proteome of human cytomegalovirus virions and dense bodies is conserved across different strains[J]. Med Microbiol Immunol, 2015, 204:285-293.
[9] Kalejta RF. Tegument proteins of human cytomegalovirus[J]. Microbiol Mol Biol Rev, 2008, 72:249-265.
[10] Choi KY, El-Hamdi NS, McGregor A, et al. Inclusion of the viral pentamer complex in a vaccine design greatly improves protection against congenital cytomegalovirus in the guinea pig model[J]. J Virol, 2019, 93:e01442-19.
[11] Chiuppesi F, Wussow F, Johnson E, et al. Vaccine-derived neutralizing antibodies to the human cytomegalovirus gH/gL pentamer potently block primary cytotrophoblast infection[J]. J Virol, 2015, 89:11884-11898.
[12] Ciferri C, Chandramouli S, Donnarumma D, et al. Structural and biochemical studies of HCMV gH/gL/gO and pentamer reveal mutually exclusive cell entry complexes[J]. Proc Natl Acad Sci U S A, 2015, 112:1767-1772.
[13] Neuber S, Wagner K, Goldner T, et al. Mutual interplay between the human cytomegalovirus terminase subunits pUL51, pUL56, and pUL89 promotes terminase complex formation[J]. J Virol, 2017, 91:e02384-16.
[14] Rebmann GM, Grabski R, Sanchez V, al ea. Phosphorylation of golgi peripheral membrane protein grasp65 is an integral step in the formation of the human cytomegalovirus cytoplasmic assembly compartment[J]. MBio, 2016, 7:e01554-16.
[15] Yu X, Trang P, Shah S, et al. Dissecting human cytomegalovirus gene function and capsid maturation by ribozyme targeting and electron cryomicroscopy[J]. Proc Natl Acad Sci U S A, 2005, 102:7103-7108.
[16] Balazs Z, Tombacz D, Szucs A, et al. Long-read sequencing of human cytomegalovirus transcriptome reveals RNA isoforms carrying distinct coding potentials[J]. Sci Rep, 2017, 7:15989.
[17] Collins-McMillen D, Chesnokova L, Lee BJ, et al. HCMV infection and apoptosis:how do monocytes survive HCMV infection[J]. Viruses, 2018, 10:533-551.
[18] Gentry BG, Gentry SN, Jackson TL, et al. Phosphorylation of antiviral and endogenous nucleotides to di- and triphosphates by guanosine monophosphate kinase[J]. Biochem Pharmacol, 2011, 81:43-49.
[19] De Clercq E, Holy A. Acyclic nucleoside phosphonates:a key class of antiviral drugs[J]. Nat Rev Drug Discov, 2005, 4:928-940.
[20] Fisher CE, Knudsen JL, Lease ED, et al. Risk factors and outcomes of ganciclovir-resistant cytomegalovirus infection in solid organ transplant recipients[J]. Clin Infect Dis, 2017, 65:57-63.
[21] Manicklal S, Emery VC, Lazzarotto T, et al. The "silent" global burden of congenital cytomegalovirus[J]. Clin Microbiol Rev, 2013, 26:86-102.
[22] Cihlar T, Chen MS. Identification of enzymes catalyzing two-step phosphorylation of cidofovir and the effect of cytomegalovirus infection on their activities in host cells[J]. Mol Pharmacol, 1996, 50:1502-1510.
[23] Jacobson MA. Treatment of cytomegalovirus retinitis in patients with the acquired immunodeficiency syndrome[J]. N Engl J Med, 1997, 337:105-114.
[24] Kotton CN. Updates on antiviral drugs for cytomegalovirus prevention and treatment[J]. Curr Opin Organ Transplant, 2019, 24:469-475.
[25] Sun K, Xu H, Hilfinger JL, et al. Improved protease-targeting and biopharmaceutical properties of novel prodrugs of ganciclovir[J]. Mol Pharm, 2018, 15:410-419.
[26] Kropeit D, Scheuenpflug J, Erb-Zohar K, et al. Pharmacokinetics and safety of letermovir, a novel anti-human cytomegalovirus drug, in patients with renal impairment[J]. Br J Clin Pharmacol, 2017, 83:1944-1953.
[27] Geary RS, Henry SP, Grillone LR. Fomivirsen:clinical pharmacology and potential drug interactions[J]. Clin Pharmacokinet, 2002, 41:255-260.
[28] Vanarsdall AL, Johnson DC. Human cytomegalovirus entry into cells[J]. Curr Opin Virol, 2012, 2:37-42.
[29] Malito E, Chandramouli S, Carfi A. From recognition to execution-the HCMV pentamer from receptor binding to fusion triggering[J]. Curr Opin Virol, 2018, 31:43-51.
[30] Stevenson EV, Collins-McMillen D, Kim JH, et al. HCMV reprogramming of infected monocyte survival and differentiation:a goldilocks phenomenon[J]. Viruses, 2014, 6:782-807.
[31] Pari GS. Nuts and bolts of human cytomegalovirus lytic DNA replication[J]. Curr Top Microbiol Immunol, 2008, 325:153-166.
[32] Sahu PK, Umme T, Yu J, et al. Selenoacyclovir and selenoganciclovir:discovery of a new template for antiviral agents[J]. J Med Chem, 2015, 58:8734-8738.
[33] Tenney DJ, Yamanaka G, Voss SM, et al. Lobucavir is phosphorylated in human cytomegalovirus-infected and -uninfected cells and inhibits the viral DNA polymerase[J]. Antimicrob Agents Chemother, 1997, 41:2680-2685.
[34] Zhou S, Breitenbach JM, Borysko KZ, et al. Synthesis and antiviral activity of (Z)- and (E)-2,2-[bis(hydroxymethyl)cyclopropylidene]methylpurines and -pyrimidines:second-generation methylenecyclopropane analogues of nucleosides[J]. J Med Chem, 2004, 47:566-575.
[35] Zhou S, Drach JC, Prichard MN, et al. (Z)- and (E)-2-(1,2-Dihydroxyethyl)methylenecyclopropane analogues of 2'-deoxyadenosine and 2'-deoxyguanosine. Synthesis of all stereoisomers, absolute configuration, and antiviral activity[J]. J Med Chem, 2009, 52:3397-3407.
[36] Luo M, Groaz E, Andrei G, et al. Expanding the antiviral spectrum of 3-fluoro-2-(phosphonomethoxy)propyl acyclic nucleoside phosphonates:diamyl aspartate amidate prodrugs[J]. J Med Chem, 2017, 60:6220-6238.
[37] Luo M, Groaz E, De Jonghe S, et al. Amidate prodrugs of cyclic 9-(S)-[3-hydroxy-2-(phosphonomethoxy)propyl]adenine with potent anti-herpesvirus activity[J]. ACS Med Chem Lett, 2018, 9:381-385.
[38] Loregian A,Appleton BA, Hogle JM, et al. Residues of human cytomegalovirus DNA polymerase catalytic subunit UL54 that are necessary and sufficient for interaction with the accessory protein UL44[J]. J Virol, 2004, 78:158-167.
[39] Chen H, Coseno M, Ficarro SB, et al. A small covalent allosteric inhibitor of human cytomegalovirus DNA polymerase subunit interactions[J]. ACS Infect Dis, 2017, 3:112-118.
[40] Kralj A, Wetzel A, Mahmoudian S, et al. Identification of novel allosteric modulators for the G-protein coupled US28 receptor of human cytomegalovirus[J]. Bioorg Med Chem Lett, 2011, 21:5446-5450.
[41] Kralj A, Nguyen MT, Tschammer N, et al. Development of flavonoid-based inverse agonists of the key signaling receptor US28 of human cytomegalovirus[J]. J Med Chem, 2013, 56:5019-5032.
[42] Ninomiya M, Tanaka K, Tsuchida Y, et al. Increased bioavailability of tricin-amino acid derivatives via a prodrug approach[J]. J Med Chem, 2011, 54:1529-1536.
[43] Zuhlsdorf M, Hinrichs W. Assemblins as maturational proteases in herpesviruses[J]. J Gen Virol, 2017, 98:1969-1984.
[44] Massari S, Mercorelli B, Sancineto L, et al. Design, synthesis, and evaluation of WC5 analogues as inhibitors of human cytomegalovirus immediate-early 2 protein, a promising target for anti-HCMV treatment[J]. ChemMedChem, 2013, 8:1403-1414.
[45] Krosky PM, Borysko KZ, Nassiri MR, et al. Phosphorylation of beta-D-ribosyl benzimidazoles is not required for activity against human cytomegalovirus[J]. Antimicrob Agents Chemother, 2002, 46:478-486.
[46] Dittmer A, Bogner E. Analysis of the quaternary structure of the putative HCMV portal protein PUL104[J]. Biochemistry, 2005, 44:759-765.
[47] Underwood MR, Ferris RG, Selleseth DW, et al. Mechanism of action of the ribopyranoside benzimidazole GW275175X against human cytomegalovirus[J]. Antimicrob Agents Chemother, 2004, 48:1647-1651.
[48] Reefschlaeger J, Bender W, Hallenberger S, et al. Novel non-nucleoside inhibitors of cytomegaloviruses (BAY 38-4766):in vitro and in vivo antiviral activity and mechanism of action[J]. J Antimicrob Chemother, 2001, 48:757-767.
[49] Chou S. Comparison of cytomegalovirus terminase gene mutations selected after exposure to three distinct inhibitor compounds[J]. Antimicrob Agents Chemother, 2017, 61:1-11.
[50] DFLD Silva, Cardoso JF, Silva SPD, et al. HCMV UL97 phosphotransferase gene mutations may be associated with antiviral resistance in immunocompromised patients in Belém, PA, Northern Brazil[J]. Rev Soc Bras Med Trop, 2018, 51:141-145.
[51] Fischer L, Imrich E, Sampaio KL, et al. Identification of resistance-associated HCMV UL97- and UL54-mutations and a UL97-polymporphism with impact on phenotypic drug-resistance[J]. Antiviral Res, 2016, 131:1-8.
[52] Sharma M, Bender BJ, Kamil JP, et al. Human cytomegalovirus UL97 phosphorylates the viral nuclear egress complex[J]. J Virol, 2015, 89:523-534.
[53] Biron KK, Harvey RJ, Chamberlain SC, et al. Potent and selective inhibition of human cytomegalovirus replication by 1263W94, a benzimidazole l-riboside with a unique mode of action[J]. Antimicrob Agents Chemother, 2002, 46:2365-2372.
[54] Marschall M, Stein-Gerlach M, Freitag M, et al. Direct targeting of human cytomegalovirus protein kinase pUL97 by kinase inhibitors is a novel principle of antiviral therapy[J]. J Gen Virol, 2002, 83:1013-1023.
[55] Herget T, Freitag M, Morbitzer M, et al. Novel chemical class of pUL97 protein kinase-specific inhibitors with strong anticytomegaloviral activity[J]. Antimicrob Agents Chemother, 2004, 48:4154-4162.
[56] Browne EP, Wing B, Shenk TJ, et al. Altered cellular mRNA levels in human cytomegalovirus-infected fibroblasts:viral block to the accumulation of antiviral mRNAs[J]. J Virol, 2001, 75:12319-12330.
[57] Zhu H, Cong JP, Yu D, et al. Inhibition of cyclooxygenase 2 blocks human cytomegalovirus replication[J]. Proc Natl Acad Sci U S A, 2002, 99:3932-3937.
[58] Dai X, Yu X, Gong H, et al. The smallest capsid protein mediates binding of the essential tegument protein pp150 to stabilize DNA-containing capsids in human cytomegalovirus[J]. PLoS Pathog, 2013, 9:e1003525.
[59] Bresnahan WA, Shenk TE. UL82 virion protein activates expression of immediate early viral genes in human cytomegalovirus-infected cells[J]. Proc Natl Acad Sci USA, 2000, 97:14506-14511.
[60] Kalejta RF, Shenk T. Proteasome-dependent, ubiquitin-independent degradation of the Rb family of tumor suppressors by the human cytomegalovirus pp71 protein[J]. Proc Natl Acad Sci U S A, 2003, 100:3263-3268.
[61] Fu YZ, Su S, Gao YQ, et al. Human cytomegalovirus tegument protein UL82 inhibits sting-mediated signaling to evade antiviral immunity[J]. Cell Host Microbe, 2017, 21:231-243.
[62] De Castro S, García-Aparicio C, Andrei G, et al. 4-Benzyloxy-γ-sultone derivatives:discovery of a novel family of non-nucleoside inhibitors of human cytomegalovirus and varicella zoster virus[J]. J Med Chem, 2009, 52:1582-1591.
[63] Gros CP, Desbois N, Michelin C, et al. Synthesis and antiviral activity evaluation of nitroporphyrins and nitrocorroles as potential agents against human cytomegalovirus infection[J]. ACS Infect Dis, 2015, 1:350-356.
相关文献:
1.魏粉菊, 马悦, 俞霁, 贾海永, 刘新泳, 展鹏.基于新靶标的HBV抑制剂研究进展(2):RNase H及其他靶标[J]. 药学学报, 2020,55(4): 566-574
2.魏文秀, 荆兰兰, 刘新泳, 展鹏.抗疱疹病毒药物化学研究新进展[J]. 药学学报, 2020,55(4): 575-584
3.修思雨, 张健, 鞠翰, 贾瑞芳, 黄兵, 展鹏, 刘新泳.抗流感病毒药物靶标及其小分子抑制剂的研究进展[J]. 药学学报, 2020,55(4): 611-626
4.宋淑, 高萍, 展鹏, 刘新泳.丙型肝炎病毒抑制剂研究进展[J]. 药学学报, 2020,55(4): 652-668
5.孙彦莹, 左晓芳, 展鹏, 刘新泳.抗腺病毒药物化学研究新进展[J]. 药学学报, 2020,55(4): 720-733
6.陶昱岑, 郝霞, 刘新泳, 展鹏.抗肠病毒71型药物化学新进展[J]. 药学学报, 2020,55(4): 744-753
7.周忠霞, 孙林, 康东伟, 陈子慧, 唐苗苗, 李思雨, 展鹏, 刘新泳.具有新作用机制的HIV-1逆转录酶抑制剂研究进展[J]. 药学学报, 2018,53(5): 691-700
8.霍志鹏, 左晓芳, 康东伟, 展鹏, 刘新泳.抗艾滋病药物新靶标及其小分子抑制剂的研究进展[J]. 药学学报, 2018,53(3): 356-374