药学学报, 2020, 55(4): 597-610
引用本文:
徐淑静, 刘新泳, 展鹏. 呼吸道合胞病毒抑制剂研究新进展[J]. 药学学报, 2020, 55(4): 597-610.
XU Shu-jing, LIU Xin-yong, ZHAN Peng. New progress in research on respiratory syncytial virus inhibitors[J]. Acta Pharmaceutica Sinica, 2020, 55(4): 597-610.

呼吸道合胞病毒抑制剂研究新进展
徐淑静, 刘新泳, 展鹏
山东大学药学院药物化学研究所, 化学生物学教育部重点实验室, 山东 济南 250012
摘要:
呼吸道合胞病毒(RSV)是引起婴幼儿、老年人和免疫功能低下者呼吸道感染的主要病原体。目前,利巴韦林和人源化单克隆抗体帕利珠常用于RSV引发的下呼吸道感染,但由于它们的疗效、经济性与安全性等问题限制了其临床应用。因此需要开发新型的RSV抑制剂来满足临床预治的需求。本文精选典型研究案例,从药物化学的角度综述了不同靶点RSV抑制剂的研究进展。
关键词:    呼吸道合胞病毒      抗病毒疗法      药物靶点      抑制剂     
New progress in research on respiratory syncytial virus inhibitors
XU Shu-jing, LIU Xin-yong, ZHAN Peng
Department of Medicinal Chemistry, Key Laboratory of Chemical Biology(Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
Abstract:
Respiratory syncytial virus (RSV) is the main pathogen causing respiratory infections in infants, the elderly, and immunocompromised individuals. Currently, ribavirin and the humanized monoclonal antibody palivizumab are commonly used for lower respiratory tract infections caused by RSV. However, their clinical application has been limited by their efficacy, economy and safety. Therefore, it is necessary to develop new RSV inhibitors to meet the needs of clinical prevention and treatment. This paper selects typical research cases and reviews the research progress of different target inhibitors from the perspective of medicinal chemistry.
Key words:    respiratory syncytial virus    antiviral therapy    drug target    inhibitor   
收稿日期: 2019-09-09
DOI: 10.16438/j.0513-4870.2019-0732
基金项目: 国家自然科学基金项目(81420108027,81573347);山东省重点研发计划(2017CXGC1401,2019JZZY021011).
通讯作者: 展鹏,Tel:86-531-88382005,E-mail:zhanpeng1982@sdu.edu.cn;刘新泳,E-mail:xinyongl@sdu.edu.cn
Email: zhanpeng1982@sdu.edu.cn;xinyongl@sdu.edu.cn
相关功能
PDF(1192KB) Free
打印本文
0
作者相关文章
徐淑静  在本刊中的所有文章
刘新泳  在本刊中的所有文章
展鹏  在本刊中的所有文章

参考文献:
[1] Cockerill GS, Good JAD, Mathews N. State of the art in respiratory syncytial virus drug discovery and development[J]. J Med Chem, 2019, 62:3206-3227.
[2] Behzadi MA. Overview of current therapeutics and novel candidates against influenza, respiratory syncytial virus, and middle east respiratory syndrome coronavirus infections[J]. Front Microbiol, 2019, 10:1327.
[3] Zheng X, Liang C, Wang L, et al. Discovery of (aza) indole derivatives as novel respiratory syncytial virus fusion inhibitors[J]. MedChemComm, 2019, 10:970-973.
[4] Pryde DC, Tran TD, Gardner I, et al. Non-benzimidazole containing inhibitors of respiratory syncytial virus[J]. Bioorg Med Chem Lett, 2013, 23:827-833.
[5] Chathuranga K, Kim MS, Lee HC, et al. Anti-respiratory syncytial virus activity of and extracts in vitro and in vivo[J]. Viruses, 2019, 11:7.
[6] Perron M, Stray K, Kinkade A, et al. GS-5806 inhibits a broad range of respiratory syncytial virus clinical isolates by blocking the virus-cell fusion process[J]. Antimicrob Agents Chemother, 2015, 60:1264-1273.
[7] Mackman RL, Sangi M, Sperandio D, et al. Discovery of an oral respiratory syncytial virus (RSV) fusion inhibitor (GS-5806) and clinical proof of concept in a human RSV challenge study[J]. J Med Chem, 2015, 58:1630-1643.
[8] Grindeland CJ, Mauriello CT, Leedahl DD, et al. Association Between updated guideline-based palivizumab administration and hospitalizations for respiratory syncytial virus infections[J]. Pediatr Infect Dis, 2016, 35:728-732.
[9] Empey KM, Peebles RS. Pharmacologic advances in the treatment and prevention of respiratory syncytial virus[J]. Clin Infect Dis, 2010, 50:1258-1267.
[10] Jorquera PA. Respiratory syncytial virus:prospects for new and emerging therapeutics[J]. Expert Rev Respir Med, 2017, 11:609-615.
[11] Pandya MC, Callahan SM, Savchenko KG. A contemporary view of respiratory syncytial virus (RSV) biology and strain-specific differences[J]. Pathogens, 2019, 8:67.
[12] McLellan JS, Ray WC. Structure and function of respiratory syncytial virus surface glycoproteins[J]. Curr Top Microbiol Immunol, 2013, 372:83-104.
[13] Stevens M, Rusch S, DeVincenzo J, et al. Antiviral activity of oral JNJ-53718678 in healthy adult volunteers challenged with respiratory syncytial virus:a placebo-controlled study[J]. J Infect Dis, 2018, 218:748-756.
[14] Xing Y. New therapies for acute RSV infections:where are we?[J]. Eur J Pediatr, 2019, 178:131-138.
[15] Roymans D, Alnajjar SS, Battles MB, et al. Therapeutic efficacy of a respiratory syncytial virus fusion inhibitor[J]. Nat Commun, 2017, 8:167.
[16] Bonfanti JF, Meyer C, Doublet F, et al. Selection of a respiratory syncytial virus fusion inhibitor clinical candidate. 2. Discovery of a morpholinopropylaminobenzimidazole derivative (TMC353121)[J]. J Med Chem, 2008, 51:875-896.
[17] Ispas G, Koul A, Verbeeck J, et al. Antiviral activity of TMC353121, a respiratory syncytial virus (RSV) fusion inhibitor, in a non-human primate model[J]. PLoS One, 2015, 10:e0126959.
[18] DeVincenzo J, Tait D, Oluwayi O, et al. Safety and efficacy of oral RV521 in a human respiratory syncytial virus (RSV) Phase 2a challenge study[J]. Am J Resp Crit Care, 2018, 197:A7715.
[19] Feng S, Hong D, Wang B, et al. Discovery of imidazopyridine derivatives as highly potent respiratory syncytial virus fusion inhibitors[J]. ACS Med Chem Lett, 2015, 6:359-362.
[20] Feng S, Li C, Chen D, et al. Discovery of methylsulfonyl indazoles as potent and orally active respiratory syncytial virus (RSV) fusion inhibitors[J]. Eur J Med Chem, 2017, 138:1147-1157.
[21] Shi W, Jiang Z, He H, et al. Discovery of 3,3'-spiro[azetidine]-2-oxo-indoline derivatives as fusion inhibitors for treatment of RSV infection[J]. ACS Med Chem Lett, 2018, 9:94-97.
[22] Zheng X, Liang C, Wang L, et al. Discovery of benzoazepinequinoline (BAQ) derivatives as novel, potent, orally bioavailable respiratory syncytial virus fusion inhibitors[J]. J Med Chem, 2018, 61:10228-10241.
[23] Battles MB, Langedijk JP, Furmanova-Hollenstein P, et al. Molecular mechanism of respiratory syncytial virus fusion inhibitors[J]. Nat Chem Biol, 2016, 12:87-93.
[24] Zheng X, Gao L, Wang L, et al. Discovery of ziresovir as a potent, selective, and orally bioavailable respiratory syncytial virus fusion protein inhibitor[J]. J Med Chem, 2019, 62:6003-6014.
[25] Samuel D, Xing W, Niedziela-Majka A, et al. GS-5806 inhibits pre-to postfusion conformational changes of the respiratory syncytial virus fusion protein[J]. Antimicrob Agents Chemother, 2015, 59:7109-7112.
[26] Hanfelt-Goade D, Maimon N, Nimer A, et al. A Phase 2b, randomized, double-blind, placebo-controlled trial of presatovir (gs-5806), a novel oral RSV fusion inhibitor, for the treatment of respiratory syncytial virus (RSV) in hospitalized adults[J]. Am J Respir Crit Care Med, 2018, 197:A4457.
[27] Denoia E, Campaneria R, Wenzel E, et al. Safety and pharmacokinetic profile of BTA585, a novel fusion inhibitor of respiratory syncytial virus, in single and multiple-ascending dose healthy volunteer studies[J]. Open Forum Infect Di, 2016, 3:652.
[28] Douglas JL, Panis ML, Ho E, et al. Inhibition of respiratory syncytial virus fusion by the small molecule VP-14637 via specific interactions with F protein[J]. J Virol, 2003, 77:5054-5064.
[29] Kim YI, Pareek R, Murphy R, et al. The antiviral effects of RSV fusion inhibitor, MDT-637, on clinical isolates, vs its achievable concentrations in the human respiratory tract and comparison to ribavirin[J]. Influenza Other Respir Viruses, 2017, 11:525-530.
[30] Douglas JL, Panis ML, Ho E, et al. Small molecules VP-14637 and JNJ-2408068 inhibit respiratory syncytial virus fusion by similar mechanisms[J]. Antimicrob Agents Chemother, 2005, 49:2460-2466.
[31] Brookes DW, Coates M, Allen H, et al. Late therapeutic intervention with a respiratory syncytial virus L-protein polymerase inhibitor, PC786, on respiratory syncytial virus infection in human airway epithelium[J]. Br J Pharmacol, 2018, 175:2520-2534.
[32] Wang G, Deval J, Hong J, et al. Discovery of 4'-chloromethyl-2'-deoxy-3',5'-di-O-isobutyryl-2'-fluorocytidine (ALS-8176), a first-in-class RSV polymerase inhibitor for treatment of human respiratory syncytial virus infection[J]. J Med Chem, 2015, 58:1862-1878.
[33] DeVincenzo JP, McClure MW, Symons JA, et al. Activity of oral ALS-008176 in a respiratory syncytial virus challenge study[J]. N Engl J Med, 2015, 373:2048-2058.
[34] Clarke MO, Mackman R, Byun D, et al. Discovery of β-D-2'-deoxy-2'-α-fluoro-4'-α-cyano-5-aza-7,9-dideaza adenosine as a potent nucleoside inhibitor of respiratory syncytial virus with excellent selectivity over mitochondrial RNA and DNA polymerases[J]. Bioorg Med Chem Lett, 2015, 25:2484-2487.
[35] Siegel D, Hui HC, Doerffler E, et al. Discovery and synthesis of a phosphoramidate prodrug of a pyrrolo[2,1-f] [triazin-4-amino] adenine C-nucleoside (GS-5734) for the treatment of Ebola and emerging viruses[J]. J Med Chem, 2017, 60:1648-1661.
[36] Sudo K, Miyazaki Y, Kojima N, et al. YM-53403, a unique anti-respiratory syncytial virus agent with a novel mechanism of action[J]. Antiviral Res, 2005, 65:125-131.
[37] Tiong-Yip CL, Aschenbrenner L, Johnson KD, et al. Characterization of a respiratory syncytial virus L protein inhibitor[J]. Antimicrob Agents Chemother, 2014, 58:3867-3873.
[38] Xiong H, Foulk M, Aschenbrenner L, et al. Discovery of a potent respiratory syncytial virus RNA polymerase inhibitor[J]. Bioorg Med Chem Lett, 2013, 23:6789-6793.
[39] Noton SL, Nagendra K, Dunn EF, et al. Respiratory syncytial virus inhibitor AZ-27 differentially inhibits different polymerase activities at the promoter[J]. J Virol, 2015, 89:7786-7798.
[40] Coates M, Brookes D, Kim YI, et al. Preclinical characterization of PC786, an inhaled small-molecule respiratory syncytial virus l protein polymerase inhibitor[J]. Antimicrob Agents Chemother, 2017, 61:e0073717.
[41] Fordyce EAF, Fraser Hunt S, Crepin D, et al. Conformationally restricted benzothienoazepine respiratory syncytial virus inhibitors:their synthesis, structural analysis and biological activities[J]. Med Chem Commun, 2018, 9:583-589.
[42] Matharu DS, Flaherty DP, Simpson DS, et al. Optimization of potent and selective quinazolinediones:inhibitors of respiratory syncytial virus that block RNA-dependent RNA-polymerase complex activity[J]. J Med Chem, 2014, 57:10314-10328.
[43] Jiménez-Somarribas A, Mao S, Yoon JJ, et al. Identification of non-nucleoside inhibitors of the respiratory syncytial virus polymerase complex[J]. J Med Chem, 2017, 60:2305-2325.
[44] Laganas VA, Dunn EF, McLaughlin RE, et al. Characterization of novel respiratory syncytial virus inhibitors identified by high throughput screen[J]. Antiviral Res, 2015, 115:71-74.
[45] Duvall JR, VerPlank L, Ludeke B, et al. Novel diversity-oriented synthesis-derived respiratory syncytial virus inhibitors identified via a high throughput replicon-based screen[J]. Antiviral Res, 2016, 131:19-25.
[46] Challa S, Scott AD, Yuzhakov O, et al. Mechanism of action for respiratory syncytial virus inhibitor RSV604[J]. Antimicrob Agents Chemother, 2015, 59:1080-1087.
[47] Chapman J, Abbott E, Alber DG, et al. RSV604, a novel inhibitor of respiratory syncytial virus replication[J]. Antimicrob Agents Chemother, 2007, 51:3346-3353.
[48] Nicholson EG. A review of therapeutics in clinical development for respiratory syncytial virus and influenza in children[J]. Clin Ther, 2018, 40:1268-1281.
[49] DeVincenzo J, Cehelsky JE, Alvarez R, et al. Evaluation of the safety, tolerability and pharmacokinetics of ALN-RSV01, a novel RNAi antiviral therapeutic directed against respiratory syncytial virus (RSV)[J]. Antiviral Res, 2008, 77:225-231.
[50] Gottlieb J, Zamora MR, Hodges T, et al. ALN-RSV01 for prevention of bronchiolitis obliterans syndrome after respiratory syncytial virus infection in lung transplant recipients[J]. J Heart Lung Transplant, 2016, 35:213-221.
[51] Evans CW, Atkins C, Pathak A, et al. Benzimidazole analogs inhibit respiratory syncytial virus G protein function[J]. Antiviral Res, 2015, 121:31-38.
[52] Jorquera PA, Mathew C, Pickens J, et al. Verdinexor (KPT-335), a selective inhibitor of nuclear export, reduces respiratory syncytial virus replication[J]. J Virol, 2019, 93:e0168418.
[53] Yang Y, Cao L, Gao H, et al. Discovery, optimization, and target identification of novel potent broad-spectrum antiviral inhibitors[J]. J Med Chem, 2019, 62:4056-4073.
[54] McLellan JS, Chen M, Joyce MG, et al. Structure-based design of a fusion glycoprotein vaccine for respiratory syncytial virus[J]. Science, 2013, 342:592-598.
[55] Larios Mora A, Detalle L, Gallup JM, et al. Delivery of ALX-0171 by inhalation greatly reduces respiratory syncytial virus disease in newborn lambs[J]. MAbs, 2018, 10:778-795.
[56] Lee Y, Ko EJ, Kim KH, et al. A unique combination adjuvant modulates immune responses preventing vaccine-enhanced pulmonary histopathology after a single dose vaccination with fusion protein and challenge with respiratory syncytial virus[J]. Virology, 2019, 534:1-13.
[57] Zu XY, Gao WN, Du Z, et al. Research progress with vaccines against respiratory syncytial virus[J]. Chin J Vac Immun (中国疫苗和免疫), 2018, 24:237-242.
[58] Crank MC, Ruckwardt TJ, Chen M, et al. A proof of concept for structure-based vaccine design targeting RSV in humans[J]. Science, 2019, 365:505-509.
相关文献:
1.马悦, 魏粉菊, 俞霁, 贾海永, 刘新泳, 展鹏.基于新靶标的HBV抑制剂研究进展(1):衣壳蛋白抑制剂[J]. 药学学报, 2020,55(4): 554-565
2.梁瑞鹏, 赵彤, 展鹏, 刘新泳.西尼罗病毒抑制剂研究进展[J]. 药学学报, 2020,55(4): 763-772
3.张友文, 张丹, 孙华.次黄嘌呤脱氢酶的基本功能及作为药物靶点的应用[J]. 药学学报, 2014,49(3): 285-292