药学学报, 2020, 55(4): 640-651
引用本文:
董悦, 展鹏, 刘新泳. 抗诺如病毒药物及其疫苗研究新进展[J]. 药学学报, 2020, 55(4): 640-651.
DONG Yue, ZHAN Peng, LIU Xin-yong. New progress in anti-norovirus drugs and vaccines[J]. Acta Pharmaceutica Sinica, 2020, 55(4): 640-651.

抗诺如病毒药物及其疫苗研究新进展
董悦, 展鹏, 刘新泳
山东大学药学院药物化学研究所, 化学生物学教育部重点实验室, 山东 济南 250012
摘要:
诺如病毒(norovirus,NoV)是引起全球急性胃肠炎流行和暴发的主要病原体,NoV感染已成为危害人类健康的重要公共卫生问题。由于缺乏合适和成熟的动物筛选模型和体外细胞培养模型,抗NoV病毒研究进展缓慢,目前临床尚缺乏针对NoV的有效抗病毒药物或疫苗。过去几年,抗NoV药物及其疫苗领域进展较大。本综述通过精选代表性研究实例,总结了抗NoV药物及其疫苗的最新进展。
关键词:    诺如病毒      急性胃肠炎      药物靶标      抑制剂      疫苗     
New progress in anti-norovirus drugs and vaccines
DONG Yue, ZHAN Peng, LIU Xin-yong
Department of Medicinal Chemistry, Key Laboratory of Chemical Biology(Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
Abstract:
Norovirus (NoV) is the main pathogen causing the global acute gastroenteritis in humans and NoV infection has become an important public health problem that threatens human health. Because of the lack of appropriate animal models and in vitro cell culture models, the development of NoV biology and antiviral research has been restricted, and there is currently no effective antiviral drug or vaccine against NoV. In the past few years, considerable progress has been made toward the development of norovirus antivirals. This review selects the most representative research examples and provides an overview of recent advances in anti-norovirus drugs and vaccines.
Key words:    norovirus    acute gastroenteritis    drug target    inhibitor    vaccine   
收稿日期: 2019-09-27
DOI: 10.16438/j.0513-4870.2019-0783
基金项目: 国家自然科学基金资助项目(81420108027,81573347);山东省重点研发计划(2017CXGC1401,2019JZZY021011).
通讯作者: 展鹏,Tel:86-531-88382005,E-mail:zhanpeng1982@sdu.edu.cn;刘新泳,E-mail:xinyongl@sdu.edu.cn
Email: zhanpeng1982@sdu.edu.cn;xinyongl@sdu.edu.cn
相关功能
PDF(771KB) Free
打印本文
0
作者相关文章
董悦  在本刊中的所有文章
展鹏  在本刊中的所有文章
刘新泳  在本刊中的所有文章

参考文献:
[1] Kapikian AZ, Wyatt RG, Dolin R, et al. Visualization by immune electron microscopy of a 27-nm particle associated with acute infectious nonbacterial gastroenteritis[J]. J Virol, 1972, 10:1075-1081.
[2] Vinjé J. Advances in laboratory methods for detection and typing of norovirus[J]. J Clin Microbiol, 2015, 53:373-381.
[3] Patel MM,Widdowson MA, Glass RI, et al. Systematic literature review of role of Noroviruses in sporadic gastroenteritis[J]. Emerg Infect Dis, 2008, 14:1224-1231.
[4] Ramani S, Atmar RL, Estes MK. Epidemiology of human Noroviruses and updates on vaccine development[J]. Curr Opin Gastroenterol, 2014, 30:25-33.
[5] Green KY. Norovirus infection in immunocompromised hosts[J]. Clin Microbiol Infect, 2014, 20:717-723.
[6] Harris JP,Lopman BA, O'Brien SJ. Infection control measures for norovirus:a systematic review of outbreaks in semi-enclosed settings[J]. J Hosp Infect, 2010, 74:1-9.
[7] Atmar RL, Estes MK. Diagnosis of noncultivatable gastroenteritis viruses, the human caliciviruses[J]. Clin Microbiol Rev, 2001, 14:15-37.
[8] Thorne L, Arias A, Goodfellow I. Advances toward a Norovirus antiviral:from classical inhibitors to lethal mutagenesis[J]. J Infect Dis, 2016, 213:S27-S31.
[9] Xi JN, Graham DY, Wang KN, et al. Norwalk virus genome cloning and characterization[J]. Science, 1990, 250:1580-1583.
[10] Hardy ME. Norovirus protein structure and function[J]. FEMS Microbiol Lett, 2005, 253:1-8.
[11] Prasad BV, Shanker S, Muhaxhiri Z, et al. Antiviral targets of human noroviruses[J]. Curr Opin Virol, 2016, 18:117-125.
[12] Kageyama T, Shinohara M, Uchida K, et al. Coexistence of multiple genotypes, including newly identified genotypes, in outbreaks of gastroenteritis due to norovirus in Japan[J]. J Clin Microbiol, 2004, 42:2988-2995.
[13] Zheng DP, Ando T, Fankhauser RL, et al. Norovirus classification and proposed strain nomenclature[J]. Virology, 2006, 346:312-323.
[14] Hoa Tran TN, Trainor E, Nakagomi T, et al. Molecular epidemiology of Noroviruses associated with acute sporadic gastroenteritis in children:global distribution of genogroups, genotypes and GII.4 variants[J]. J Clin Virol, 2013, 56:185-193.
[15] Centers for Disease Control and Prevention (CDC). Emergence of new Norovirus strain GII.4 Sydney--United States, 2012[J]. Morb Mortal Wkly Rep, 2013, 62:55.
[16] Mumphrey SM, Changotra H, Moore TN, et al. Murine norovirus 1 infection is associated with histopathological changes in immunocompetent hosts, but clinical disease is prevented by STAT1-dependent interferon responses[J]. J Virol, 2007, 81:3251-3263.
[17] Jones MK, Watanabe M, Zhu S, et al. Enteric bacteria promote human and mouse norovirus infection of B cells[J]. Science, 2014, 346:755-759.
[18] Ettayebi K, Crawford SE, Murakami K, et al. Replication of human noroviruses in stem cell-derived human enteroids[J]. Science, 2016, 353:1387-1393.
[19] Chang KO, Sosnovtsev SV, Belliot G, et al. Stable expression of a Norwalk virus RNA replicon in a human hepatoma cell line[J]. Virology, 2006, 353:463-473.
[20] Cheetham S, Souza M, Meulia T, et al. Pathogenesis of a genogroup II human norovirus in gnotobiotic pigs[J]. J Virol, 2006, 80:10372-10381.
[21] Souza M, Azevedo MS, Jung K, et al. Pathogenesis and immune responses in gnotobiotic calves after infection with the genogroup II.4-HS66 strain of human norovirus[J]. J Virol, 2008, 82:1777-1786.
[22] Bok K, Parra GI, Mitra T, et al. Chimpanzees as an animal model for human norovirus infection and vaccine development[J]. Proc Natl Acad Sci U S A, 2011, 108:325-330.
[23] Rockx BH, Bogers WM, Heeney JL, et al. Experimental norovirus infections in non-human primates[J]. J Med Virol, 2005, 75:313-320.
[24] Farkas T. Natural norovirus infections in Rhesus Macaques[J]. Emerg Infect Dis, 2016, 22:1272-1274.
[25] Vashist S, Bailey D, Putics A, et al. Model systems for the study of human norovirus Biology[J]. Future Virol, 2009, 4:353-367.
[26] Karst SM, Wobus CE, Lay M, et al. STAT1-dependent innate immunity to a Norwalk-like virus[J]. Science, 2003, 299:1575-1578.
[27] Netzler NE, Enosi Tuipulotu D, White PA. Norovirus antivirals:where are we now?[J]. Med Res Rev, 2019, 39:860-886.
[28] Rossignol JF. Nitazoxanide:a first-in-class broad-spectrum antiviral agent[J]. Antiviral Res, 2014, 110:94-103.
[29] Rossignol JF, El-Gohary YM. Nitazoxanide in the treatment of viral gastroenteritis:a randomized double-blind placebo-controlled clinical trial[J]. Aliment Pharmacol Ther, 2006, 24:1423-1430.
[30] Siddiq DM, Koo HL, Adachi JA, et al. Norovirus gastroenteritis successfully treated with nitazoxanide[J]. J Infect, 2011, 63:394-397.
[31] Hutson AM, Atmar RL, Graham DY, et al. Norwalk virus infection and disease is associated with ABO histo-blood group type[J]. J Infect Dis, 2002, 185:1335-1337.
[32] Tan M, Hegde RS, Jiang X. The P domain of Norovirus capsid protein forms dimer and binds to histo-blood group antigen receptors[J]. J Virol, 2004, 78:6233-6242.
[33] Choi JM, Hutson AM, Estes MK, et al. Atomic resolution structural characterization of recognition of histo-blood group antigens by Norwalk virus[J]. Proc Natl Acad Sci U S A, 2008, 105:9175-9180.
[34] Zhang XF, Tan M, Chhabra M, et al. Inhibition of histo-blood group antigen binding as a novel strategy to block Norovirus infections[J]. PLoS One, 2013, 8:e69379.
[35] Weichert S, Koromyslova A, Singh BK, et al. Structural basis for norovirus inhibition by human milk oligosaccharides[J]. J Virol, 2016, 90:4843-4848.
[36] Koromyslova A, Tripathi S, Morozov V, et al. Human norovirus inhibition by a human milk oligosaccharide[J]. Virology, 2017, 508:81-89.
[37] Koromyslova AD, White PA, Hansman GS. Treatment of norovirus particles with citrate[J]. Virology, 2015, 485:199-204.
[38] Chen Z, Sosnovtsev SV, Bok K, et al. Development of Norwalk virus-specific monoclonal antibodies with therapeutic potential for the treatment of Norwalk virus gastroenteritis[J]. J Virol, 2013, 87:9547-9557.
[39] Koromyslova AD, Hansman GS. Nanobodies targeting norovirus capsid reveal functional epitopes and potential mechanisms of neutralization[J]. PLoS Pathog, 2017, 13:e1006636.
[40] Koromyslova AD, Hansman GS. Nanobody binding to a conserved epitope promotes norovirus particle disassembly[J]. J Virol, 2015, 89:2718-2730.
[41] Ng KK, Pendas-Franco N, Rojo J, et al. Crystal structure of Norwalk virus polymerase reveals the carboxyl terminus in the active site cleft[J]. J Biol Chem, 2004, 279:16638-16645.
[42] Eltahla AA, Luciani F, White PA, et al. Inhibitors of the hepatitis C virus polymerase; mode of action and resistance[J]. Viruses, 2015, 7:5206-5224.
[43] Fung J, Lai CL, Seto WK, et al. Nucleoside/nucleotide analogues in the treatment of chronic hepatitis B[J]. J Antimicrob Chemother, 2011, 66:2715-2725.
[44] De Clercq E. The nucleoside reverse transcriptase inhibitors, nonnucleoside reverse transcriptase inhibitors, and protease inhibitors in the treatment of HIV infections (AIDS)[J]. Adv Pharmacol, 2013, 67:317-358.
[45] Gardelli C, Attenni B, Donghi M, et al. Phosphoramidate prodrugs of 2'-C-methylcytidine for therapy of hepatitis C virus infection[J]. J Med Chem, 2009, 52:5394-5407.
[46] Rocha-Pereira J, Jochmans D, Debing Y, et al. The viral polymerase inhibitor 2'-C-methylcytidine inhibits Norwalk virus replication and protects against norovirus-induced diarrhea and mortality in a mouse model[J]. J Virol, 2013, 87:11798-11805.
[47] Kolawole AO, Rocha-Pereira J, Elftman MD, et al. Inhibition of human norovirus by a viral polymerase inhibitor in the B cell culture system and in the mouse model[J]. Antiviral Res, 2016, 132:46-49.
[48] Furuta Y, Gowen BB, Takahashi K, et al. Favipiravir (T-705), a novel viral RNA polymerase inhibitor[J]. Antiviral Res, 2013, 100:446-454.
[49] Jin Z, Tucker K, Lin X, et al. Biochemical evaluation of the inhibition properties of favipiravir and 2'-C-methyl-cytidine triphosphates against human and mouse norovirus RNA polymerases[J]. Antimicrob Agents Chemother, 2015, 59:7504-7516.
[50] Snell NJ. Ribavirin--current status of a broad spectrum antiviral agent[J]. Expert Opin Pharmacother, 2001, 2:1317-1324.
[51] Chang KO, George DW. Interferons and ribavirin effectively inhibit Norwalk virus replication in replicon-bearing cells[J]. J Virol, 2007, 81:12111-12118.
[52] Alam I, Lee JH, Cho KJ, et al. Crystal structures of murine norovirus-1 RNA-dependent RNA polymerase in complex with 2-thiouridine or ribavirin[J]. Virology, 2012, 426:143-151.
[53] Netzler NE, Enosi Tuipulotu D, Eltahla AA, et al. Broad-spectrum non-nucleoside inhibitors for caliciviruses[J]. Antiviral Res, 2017, 146:65-75.
[54] Mastrangelo E, Pezzullo M, Tarantino D, et al. Structure-based inhibition of Norovirus RNA-dependent RNA polymerases[J]. J Mol Biol, 2012, 419:198-210.
[55] Tarantino D, Pezzullo M, Mastrangelo E, et al. Naphthalene-sulfonate inhibitors of human norovirus RNA-dependent RNA-polymerase[J]. Antiviral Res, 2014, 102:23-28.
[56] Mastrangelo E, Mazzitelli S, Fabbri J, et al. Delivery of suramin as an antiviral agent through liposomal systems[J]. ChemMedChem, 2014, 9:933-939.
[57] Eltahla AA, Lim KL, Eden JS, et al. Nonnucleoside inhibitors of norovirus RNA polymerase:scaffolds for rational drug design[J]. Antimicrob Agents Chemother, 2014, 58:3115-3123.
[58] Ferla S, Netzler NE, Ferla S, et al. In silico screening for human norovirus antivirals reveals a novel non-nucleoside inhibitor of the viral polymerase[J]. Sci Rep, 2018, 8:4129.
[59] Kim Y, Lovell S, Tiew KC, et al. Broad-spectrum antivirals against 3C or 3C-like proteases of picornaviruses, noroviruses, and coronaviruses[J]. J Virol, 2012, 86:11754-11762.
[60] Kitano M, Hosmillo M, Emmott E, et al. Selection and characterization of rupintrivir-resistant Norwalk virus replicon cells in vitro[J]. Antimicrob Agents Chemother, 2018, 62:e00201-00218.
[61] Hayden FG, Turner RB, Gwaltney JM, et al. Phase II, randomized, double-blind, placebo-controlled studies of ruprintrivir nasal spray 2-percent suspension for prevention and treatment of experimentally induced rhinovirus colds in healthy volunteers[J]. Antimicrob Agents Chemother, 2003, 47:3907-3916.
[62] Mandadapu SR, Gunnam MR, Galasiti Kankanamalage AC, et al. Potent inhibition of norovirus by dipeptidyl α-hydroxyphosphonate transition state mimics[J]. Bioorg Med Chem Lett, 2013, 23:5941-5944.
[63] Tiew KC, He G, Aravapalli S, et al. Design, synthesis, and evaluation of inhibitors of Norwalk virus 3C protease[J]. Bioorg Med Chem Lett, 2011, 21:5315-5319.
[64] Galasiti Kankanamalage AC, Kim Y, Weerawarna PM, et al. Structure-guided design and optimization of dipeptidyl inhibitors of norovirus 3CL protease. Structure-activity relationships and biochemical, X-ray crystallographic, cell-based, and in vivo studies[J]. J Med Chem, 2015, 58:3144-3155.
[65] Muhaxhiri Z, Deng L, Shanker S, et al. Structural basis of substrate specificity and protease inhibition in Norwalk virus[J]. J Virol, 2013, 87:4281-4292.
[66] Mandadapu SR, Weerawarna PM, Gunnam MR, et al. Potent inhibition of norovirus 3CL protease by peptidyl α-ketoamides and α-ketoheterocycles[J]. Bioorg Med Chem Lett, 2012, 22:4820-4826.
[67] Mandadapu SR, Gunnam MR, Tiew KC, et al. Inhibition of norovirus 3CL protease by bisulfite adducts of transition state inhibitors[J]. Bioorg Med Chem Lett, 2013, 23:62-65.
[68] Galasiti Kankanamalage AC, Kim Y, Rathnayake AD, et al. Design, synthesis, and evaluation of novel prodrugs of transition state inhibitors of norovirus 3CL protease[J]. J Med Chem, 2017, 60:6239-6248.
[69] Damalanka VC, Kim Y, Alliston KR, et al. Oxadiazole-based cell permeable macrocyclic transition state inhibitors of norovirus 3CL protease[J]. J Med Chem, 2016, 59:1899-1913.
[70] Damalanka VC, Kim Y, Galasiti Kankanamalage AC, et al. Design, synthesis, and evaluation of a novel series of macrocyclic inhibitors of norovirus 3CL protease[J]. Eur J Med Chem, 2017, 127:41-61.
[71] Damalanka VC, Kim Y, Galasiti Kankanamalage AC, et al. Structure-guided design, synthesis and evaluation of oxazolidinone-based inhibitors of norovirus 3CL protease[J]. Eur J Med Chem, 2018, 143:881-890.
[72] Weerawarna PM, Kim Y, Galasiti Kankanamalage AC, et al. Structure-based design and synthesis of triazole-based macrocyclic inhibitors of norovirus protease:structural, biochemical, spectroscopic, and antiviral studies[J]. Eur J Med Chem, 2016, 119:300-318.
[73] Mandadapu SR, Weerawarna PM, Prior AM, et al. Macrocyclic inhibitors of 3C and 3C-like proteases of picornavirus, norovirus, and coronavirus[J]. Bioorg Med Chem Lett, 2013, 23:3709-3712.
[74] Kaufmann SHE, Dorhoi A, Hotchkiss RS, et al. Host-directed therapies for bacterial and viral infections[J]. Nat Rev Drug Discov, 2018, 17:35-56.
[75] Gonzalez-Hernandez MJ, Pal A, Gyan KE, et al. Chemical derivatives of a small molecule deubiquitinase inhibitor have antiviral activity against several RNA viruses[J]. PLoS One, 2014, 9:e94491.
[76] Luo H. Interplay between the virus and the ubiquitin-proteasome system:molecular mechanism of viral pathogenesis[J]. Curr Opin Virol, 2016, 17:1-10.
[77] Perry JW, Ahmed M, Chang KO, et al. Antiviral activity of a small molecule deubiquitinase inhibitor occurs via induction of the unfolded protein response[J]. PLoS Pathog, 2012, 8:e1002783.
[78] Charbonneau ME, Gonzalez-Hernandez MJ, Showalter HD, et al. Small molecule deubiquitinase inhibitors promote macrophage anti-infective capacity[J]. PLoS One, 2014, 9:e104096.
[79] Li J, Soroka J, Buchner J. The Hsp90 chaperone machinery:conformational dynamics and regulation by co-chaperones[J]. Biochim Biophys Acta, 2012, 1823:624-635.
[80] Vashist S, Urena L, Gonzalez-Hernandez MB, et al. Molecular chaperone Hsp90 is a therapeutic target for noroviruses[J]. J Virol, 2015, 89:6352-6363.
[81] Maloney NS, Thackray LB, Goel G, et al. Essential cell-autonomous role for interferon (IFN) regulatory factor 1 in IFN-γ-mediated inhibition of norovirus replication in macrophages[J]. J Virol, 2012, 86:12655-12664.
[82] Thackray LB, Duan E, Lazear HM, et al. Critical role for interferon regulatory factor 3(IRF-3) and IRF-7 in type I interferon-mediated control of murine norovirus replication[J]. J Virol, 2012, 86:13515-13523.
[83] Changotra H, Jia Y, Moore TN, et al. Type I and Type II interferons inhibit the translation of murine norovirus proteins[J]. J Virol, 2009, 83:5683-5692.
[84] Nice TJ, Robinson BA, Van Winkle JA. The role of interferon in persistent viral infection:insights from murine norovirus[J]. Trends Microbiol, 2018, 26:510-524.
[85] Kotenko SV, Gallagher G, Baurin VV, et al. IFN-lambdas mediate antiviral protection through a distinct class II cytokine receptor complex[J]. Nat Immunol, 2003, 4:69-77.
[86] Bolen CR, Ding S, Robek MD, et al. Dynamic expression profiling of type I and type III interferon-stimulated hepatocytes reveals a stable hierarchy of gene expression[J]. Hepatology, 2014, 59:1262-1272.
[87] Nice TJ, Baldridge MT, McCune BT, et al. Interferon-λ cures persistent murine norovirus infection in the absence of adaptive immunity[J]. Science, 2015, 347:269-273.
[88] Rocha-Pereira J, Jacobs S, Noppen S, et al. Interferon lambda (IFN-λ) efficiently blocks norovirus transmission in a mouse model[J]. Antiviral Res, 2018, 149:7-15.
[89] Bam RA, Jones GS, Irrinki A, et al. TLR7 agonist GS-9620 is a potent inhibitor of acute HIV-1 infection in human peripheral blood mononuclear cells[J]. Antimicrob Agents Chemother, 2016, 61:e01369-16.
[90] Enosi Tuipulotu D, Netzler NE, Lun JH, et al. TLR7 agonists display potent antiviral effects against norovirus infection via innate stimulation[J]. Antimicrob Agents Chemother, 2018, 62:e02417-17.
[91] Lee W, Kim M, Lee SH, et al. Prophylactic efficacy of orally administered Bacillus poly-γ-glutamic acid, a non-LPS TLR4 ligand, against norovirus infection in mice[J]. Sci Rep, 2018, 8:8667.
[92] Moore RA, Edwards JE, Hopwood J, et al. Imiquimod for the treatment of genital warts:a quantitative systematic review[J]. BMC Infect Dis, 2001, 1:3.
[93] Dowling JK, Mansell A. Toll-like receptors:the swiss army knife of immunity and vaccine development[J]. Clin Transl Immunol, 2016, 5:e85.
[94] Ohba M, Oka T, Ando T, et al. Antiviral effect of theaflavins against caliciviruses[J]. J Antibiot (Tokyo), 2017, 70:443-447.
[95] Seo DJ, Choi C. Inhibitory mechanism of five natural flavonoids against murine norovirus[J]. Phytomedicine, 2017, 30:59-66.
[96] Dong JS, Su BJ, Oh H, et al. Comparison of the antiviral activity of flavonoids against murine norovirus and feline calicivirus[J]. Food Control, 2016, 60:25-30.
[97] Su X, D'Souza DH. Naturally occurring flavonoids against human norovirus surrogates[J]. Food Environ Virol, 2013, 5:97-102.
[98] Yang M, Lee G, Si J, et al. Curcumin shows antiviral properties against norovirus[J]. Molecules, 2016, 21:1401.
[99] Lee H, Ko G. Antiviral effect of vitamin A on norovirus infection via modulation of the gut microbiome[J]. Sci Rep, 2016, 6:25835.
[100] Fumian TM, Tuipulotu DE, Netzler NE, et al. Potential therapeutic agents for feline calicivirus infection[J]. Viruses, 2018, 10:433.
[101] Jiang X, Wang M, Graham DY, et al. Expression, self-assembly, and antigenicity of the Norwalk virus capsid protein[J]. J Virol, 1992, 66:6527-6532.
[102] El-Kamary SS, Pasetti MF, Mendelman PM, et al. Adjuvanted intranasal Norwalk virus-like particle vaccine elicits antibodies and antibody-secreting cells that express homing receptors for mucosal and peripheral lymphoid tissues[J]. J Infect Dis, 2010, 202:1649-1658.
[103] Treanor JJ, Atmar RL, Frey SE, et al. A novel intramuscular bivalent norovirus virus-like particle vaccine candidate--reactogenicity, safety, and immunogenicity in a Phase 1 trial in healthy adults[J]. J Infect Dis, 2014, 210:1763-1771.
[104] Tan M, Huang P, Xia M, et al. Norovirus P particle, a novel platform for vaccine development and antibody production[J]. J Virol, 2011, 85:753-764.
相关文献:
1.魏粉菊, 马悦, 俞霁, 贾海永, 刘新泳, 展鹏.基于新靶标的HBV抑制剂研究进展(2):RNase H及其他靶标[J]. 药学学报, 2020,55(4): 566-574
2.修思雨, 张健, 鞠翰, 贾瑞芳, 黄兵, 展鹏, 刘新泳.抗流感病毒药物靶标及其小分子抑制剂的研究进展[J]. 药学学报, 2020,55(4): 611-626
3.宋淑, 高萍, 展鹏, 刘新泳.丙型肝炎病毒抑制剂研究进展[J]. 药学学报, 2020,55(4): 652-668
4.孙彦莹, 左晓芳, 展鹏, 刘新泳.抗腺病毒药物化学研究新进展[J]. 药学学报, 2020,55(4): 720-733
5.周忠霞, 孙林, 康东伟, 陈子慧, 唐苗苗, 李思雨, 展鹏, 刘新泳.具有新作用机制的HIV-1逆转录酶抑制剂研究进展[J]. 药学学报, 2018,53(5): 691-700
6.霍志鹏, 左晓芳, 康东伟, 展鹏, 刘新泳.抗艾滋病药物新靶标及其小分子抑制剂的研究进展[J]. 药学学报, 2018,53(3): 356-374