药学学报, 2020, 55(4): 679-693
黄天广, 孙林, 展鹏, 刘新泳. 广谱抗病毒药物研究进展[J]. 药学学报, 2020, 55(4): 679-693.
HUANG Tian-guang, SUN Lin, ZHAN Peng, LIU Xin-yong. Recent advances in the research of broad-spectrum antiviral agents[J]. Acta Pharmaceutica Sinica, 2020, 55(4): 679-693.

黄天广, 孙林, 展鹏, 刘新泳
山东大学药学院药物化学研究所, 化学生物学教育部重点实验室, 山东 济南 250012
关键词:    广谱      抗病毒药物      药物靶标      优势结构     
Recent advances in the research of broad-spectrum antiviral agents
HUANG Tian-guang, SUN Lin, ZHAN Peng, LIU Xin-yong
Department of Medicinal Chemistry, Key Laboratory of Chemical Biology(Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
Viral infections have always threatened human health. Broad-spectrum antiviral agents (BSAs) can either target host proteins that are essential for viral replication, or act on multiple viruses or multiple genotypes of the same virus. More importantly, BSAs could reduce the possibility of drug resistance. From the perspective of medicinal chemistry, this review summarizes recent advances in the research of broad-spectrum antiviral drugs with privileged structures or targeting specific targets in the viral life cycle.
Key words:    broad-spectrum    antiviral agent    drug target    privileged structure   
收稿日期: 2019-10-24
DOI: 10.16438/j.0513-4870.2019-0839
基金项目: 国家自然科学基金面上项目(81773574);山东省重点研发计划(2017CXGC1401,2019JZZY021011).
通讯作者: 展鹏,Tel:86-531-88380270,E-mail:zhanpeng1982@sdu.edu.cn;刘新泳,E-mail:xinyongl@sdu.edu.cn
Email: zhanpeng1982@sdu.edu.cn;xinyongl@sdu.edu.cn
PDF(797KB) Free
黄天广  在本刊中的所有文章
孙林  在本刊中的所有文章
展鹏  在本刊中的所有文章
刘新泳  在本刊中的所有文章

[1] Cagno V, Tintori C, Civra A, et al. Novel broad spectrum virucidal molecules against enveloped viruses[J]. PLoS One, 2018, 13:12.
[2] Howard CR, Fletcher NF. Emerging virus diseases:can we ever expect the unexpected[J]. Emerg Microbes Infect, 2012, 1:1-9.
[3] Ianevski A, Andersen PI, Merits A, et al. Expanding the activity spectrum of antiviral agents[J]. Drug Discov Today, 2019, 24:1224-1228.
[4] Ianevski A, Zusinaite E, Kuivanen S, et al. Novel activities of safe-in-human broad-spectrum antiviral agents[J]. Antiviral Res, 2018, 154:174-182.
[5] Martinez JP, Sasse F, Bronstrup M, et al. Antiviral drug discovery:broad-spectrum drugs from nature[J]. Nat Prod Rep, 2015, 1:29-48.
[6] To KKW, Zhou J, Chan JFW, et al. Host genes and influenza pathogenesis in humans:an emerging paradigm[J]. Curr Opin Virol, 2015, 14:7-15.
[7] Alaqeel SI. Synthetic approaches to benzimidazoles from o-phenylenediamine:a literature review[J]. J Saudi Chem Soc, 2017, 2:229-237.
[8] Brai A, Fazi R, Tintori C, et al. Human DDX3 protein is a valuable target to develop broad spectrum antiviral agents[J]. Proc Natl Acad Sci U S A, 2016, 113:5388-5393.
[9] Lin K, Gallay P. Curing a viral infection by targeting the host:the example of cyclophilin inhibitors[J]. Antiviral Res, 2013, 99:68-77.
[10] Zeisel MB, Lupberger J, Fofana I, et al. Host-targeting agents for prevention and treatment of chronic hepatitis C-perspectives and challenges[J]. J Hepatol, 2013, 58:375-384.
[11] Zhu JD, Meng W, Wang XJ, et al. Broad-spectrum antiviral agents[J]. Front Microbiol, 2015, 6:517.
[12] Garcia-Serradilla M, Risco C, Pacheco B. Drug repurposing for new, efficient, broad spectrum antivirals[J]. Virus Res, 2019, 264:22-31.
[13] Ng KK, Arnold JJ, Cameron CE. Structure-function relationships among RNA-dependent RNA polymerases[J]. Curr Top Microbiol Immunol, 2008, 320:137-156.
[14] Liu H, Naismith JH, Hay RT. Adenovirus DNA replication[J]. Curr Top Microbiol Immunol, 2003, 272:131-164.
[15] Chang KO, George DW. Interferons and ribavirin effectively inhibit Norwalk virus replication in replicon-bearing cells[J]. J Virol, 2007, 81:12111-12118.
[16] Snell NJC. Ribavirin-current status of a broad spectrum antiviral agent[J]. Expert Opin Pharmacother, 2001, 8:1317-1324.
[17] https://mp.weixin.qq.com/s/KIMpTiMCSc2VMAgH5W9ooA.
[18] Sofia MJ, Chang W, Furman PA, et al. Nucleoside, nucleotide, and non-nucleoside inhibitors of hepatitis C virus NS5B RNA-dependent RNA-polymerase[J]. J Med Chem, 2012, 55:2481-2531.
[19] Siegel D, Hui HC, Doerffler E, et al. Discovery and synthesis of a phosphoramidate prodrug of a pyrrolo[2, 1-f] [triazin-4-amino] adenine C-nucleoside (GS-5734) for the treatment of Ebola and Emerging viruses[J]. J Med Chem, 2017, 60:1648-1661.
[20] Tchesnokov EP, Feng JY, Porter DP, et al. Mechanism of inhibition of Ebola virus RNA-dependent RNA polymerase by remdesivir[J]. Viruses, 2019, 11:326.
[21] Lo MK, Jordan R, Arvey A, et al. GS-5734 and its parent nucleoside analog inhibit Filo-, Pneumo-, and Paramyxoviruses[J]. Sci Rep, 2017, 7:43395.
[22] Sheahan TP, Sims AC, Graham RL, et al. Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses[J]. Sci Transl Med, 2017, 9:396.
[23] Warren TK, Jordan R, Lo MK, et al. Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys[J]. Nature, 2016, 531:381-385.
[24] Wang M, Cao R, Zhang L, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro[J]. Cell Res, 2020. DOI:10.1038/s41422-020-0282-0.
[25] Anthony SJ, Epstein JH, Murray KA, et al. A strategy to estimate unknown viral diversity in mammals[J]. MBio, 2013, 4:13.
[26] Wisskirchen K, Lucifora J, Michler T, et al. New pharmacological strategies to fight enveloped viruses[J]. Trends Pharmacol Sci, 2014, 9:470-478.
[27] Mackenzie JS, Jeggo M. Reservoirs and vectors of emerging viruses[J]. Curr Opin Virol, 2013, 2:170-179.
[28] McMahon HT, Gallop JL. Membrane curvature and mechanisms of dynamic cell membrane remodelling[J]. Nature, 2005, 438:590-596.
[29] Chen M, Aoki-Utsubo C, Kameoka M, et al. Broad-spectrum antiviral agents:secreted phospholipase A2 targets viral envelope lipid bilayers derived from the endoplasmic reticulum membrane[J]. Sci Rep, 2017, 7:1-8.
[30] Shivanna V, Kim Y, Chang KO. Endosomal acidification and cathepsin L activity is required for calicivirus replication[J]. Virology, 2014, 464:287-295.
[31] Chandran K, Sullivan NJ, Felbor U, et al. Endosomal proteolysis of the Ebola virus glycoprotein is necessary for infection[J]. Science, 2005, 308:1643-1645.
[32] Rolain JM, Colson P, Raoult D. Recycling of chloroquine and its hydroxyl analogue to face bacterial, fungal and viral infections in the 21st century[J]. Int J Antimicrob Agents, 2007, 30:297-308.
[33] Salata C, Calistri A, Parolin C, et al. Antiviral activity of cationic amphiphilic drugs[J]. Expert Rev Anti Infect Ther, 2017, 15:483-492.
[34] Savarino A, Boelaert JR, Cassone A, et al. Effects of chloroquine on viral infections:an old drug against today's diseases[J]. Lancet Infect Dis, 2003, 3:722-727.
[35] Brouwers J, Vermeire K, Schols D, et al. Development and in vitro evaluation of chloroquine gels as microbicides against HIV-1 infection[J]. Virology, 2008, 378:306-310.
[36] de Wilde AH, Jochmans D, Posthuma CC, et al. Screening of an FDA-approved compound library identifies four small-molecule inhibitors of Middle East respiratory syndrome coronavirus replication in cell culture[J]. Antimicrob Agents Chemother, 2014, 58:4875-4884.
[37] Kaptein SJF, Neyts J. Towards antiviral therapies for treating dengue virus infections[J]. Curr Opin Pharmacol, 2016, 30:1-7.
[38] Madrid PB, Panchal RG, Warren TK, et al. Evaluation of Ebola virus inhibitors for drug repurposing[J]. ACS Infect Dis, 2015, 1:317-326.
[39] Delvecchio R, Higa LM, Pezzuto P, et al. Chloroquine, an endocytosis blocking agent, inhibits Zika virus infection in different cell models[J]. Viruses, 2016, 8:322.
[40] Cordin O, Banroques J, Tanner NK, et al. The DEAD-box protein family of RNA helicases[J]. Gene, 2006, 367:17-37.
[41] Linder P. Dead-box proteins:a family affair-active and passive players in RNP-remodeling[J]. Nucleic Acids Res, 2006, 34:4168-4180.
[42] Schröder M. Human DEAD-box protein 3 has multiple functions in gene regulation and cell cycle control and is a prime target for viral manipulation[J]. Biochem Pharmacol, 2010, 3:297-306.
[43] Ricardo SR, Théophile O. The role of the DEAD-box RNA helicase DDX3 in mRNA metabolism[J]. Wiley Interdiscip Rev RNA, 2013, 4:369-385.
[44] Riva V, Maga G. From the magic bullet to the magic target:exploiting the diverse roles of DDX3X in viral infections and tumorigenesis[J]. Future Med Chem, 2019, 11:1357-1381.
[45] Ariumi Y. Multiple functions of DDX3 RNA helicase in gene regulation, tumorigenesis, and viral infection[J]. Front Genet, 2014, 5:423.
[46] Valiente-Echeverría F, Hermoso MA, Ricardo SR. RNA helicase DDX3:at the crossroad of viral replication and antiviral immunity[J]. Rev Med Virol, 2015, 5:286-299.
[47] Thulasi Raman SN, Liu G, Pyo HM, et al. DDX3 interacts with influenza A virus NS1 and NP proteins and exerts antiviral function through regulation of stress granule formation[J]. J Virol, 2016, 7:3661-3675.
[48] Fazi R, Tintori C, Brai A, et al. Homology model-based virtual screening for the identification of human helicase DDX3 inhibitors[J]. J Chem Inf Model, 2015, 11:2443-2454.
[49] Radi M, Falchi F, Garbelli A, et al. Discovery of the first small molecule inhibitor of human DDX3 specifically designed to target the RNA binding site:towards the next generation HIV-1 inhibitors[J]. Bioorg Med Chem Lett, 2012, 22:2094-2098.
[50] Harak C, Lohmann V. Ultrastructure of the replication sites of positive-strand RNA viruses[J]. Virology, 2015, 479:418-433.
[51] Dorobantu CM, Albulescu L, Harak C, et al. Modulation of the host lipid landscape to promote RNA virus replication:the picornavirus encephalomyocarditis virus converges on the pathway used by hepatitis C virus[J]. PLoS Pathog, 2015, 11:9.
[52] Boura E, Nencka R. Phosphatidylinositol 4-kinases:function, structure, and inhibition[J]. Exp Cell Res, 2015, 2:136-145.
[53] Minogue S, Waugh MG. The phosphatidylinositol 4-kinases:don't call it a comeback[J]. Subcell Biochem, 2012, 58:1-24.
[54] Mejdrova I, Chalupska D, Plackova P, et al. Rational design of novel highly potent and selective phosphatidylinositol 4-Kinase IIIbeta(PI4KB) inhibitors as broad-spectrum antiviral agents and tools for chemical biology[J]. J Med Chem, 2017, 60:100-118.
[55] Knight ZA, Gonzalez B, Feldman ME, et al. A pharmacological map of the PI3-K family defines a role for p110α in insulin signaling[J]. Cell, 2006, 4:733-747.
[56] MejdrovÁ I, ChalupskÁ D, Kögler M, et al. Highly selective phosphatidylinositol 4-kinase IIIβ inhibitors and structural insight into their mode of action[J]. J Med Chem, 2015, 58:3767-3793.
[57] Ahmed-Belkacem A, Colliandre L, Ahnou N, et al. Fragment-based discovery of a new family of non-peptidic small-molecule cyclophilin inhibitors with potent antiviral activities[J]. Nat Commun, 2016, 7:1-11.
[58] Fischer G, Wittmann-Liebold B, Lang K, et al. Cyclophilin and peptidyl-prolyl cis-trans isomerase are probably identical proteins[J]. Nature, 1989, 337:476-478.
[59] Takahashi N, Hayano T, Suzuki M. Peptidyl-prolyl cis-trans isomerase is the cyclosporin A-binding protein cyclophilin[J]. Nature, 1989, 337:473-475.
[60] Hartono C, Muthukumar T, Suthanthiran M. Immunosuppressive drug therapy[J]. Cold Spring Harb Perspect Med, 2013, 3:9.
[61] Bienkowska-Haba M, Patel HD, Sapp M. Target cell cyclophilins facilitate human papillomavirus type 16 infection[J]. PLoS Pathog, 2009, 5:7.
[62] Bose S, Mathur M, Bates P, et al. Requirement for cyclophilin A for the replication of vesicular stomatitis virus New Jersey serotype[J]. J Gen Virol, 2003, 7:1687-1699.
[63] Franke EK, Yuan HEH, Luban J. Specific incorporation of cyclophilin A into HIV-1 virions[J]. Nature, 1994, 372:359-362.
[64] Hansson MJ, Moss SJ, Bobardt M, et al. Bioengineering and semisynthesis of an optimized cyclophilin inhibitor for treatment of chronic viral infection[J]. Chem Biol, 2015, 2:285-292.
[65] Medzhitov R. Recognition of microorganisms and activation of the immune response[J]. Nature, 2007, 449:819-826.
[66] Du K, Liu J, Broering R, et al. Recent advances in the discovery and development of TLR ligands as novel therapeutics for chronic HBV and HIV infections[J]. Expert Opin Drug Discov, 2018, 7:661-670.
[67] Nosratabadi R, Alavian SM, Zare-Bidaki M, et al. Innate immunity related pathogen recognition receptors and chronic hepatitis B infection[J]. Mol Immunol, 2017, 90:64-73.
[68] Gay NJ, Gangloff M. Structure and function of Toll receptors and their ligands[J]. Annu Rev Biochem, 2007, 76:141-165.
[69] Gibbert K, Dietze KK, Zelinskyy G, et al. Polyinosinic-polycytidylic acid treatment of Friend retrovirus-infected mice improves functional properties of virus-specific T cells and prevents virus-induced disease[J]. J Immunol, 2010, 10:6179-6189.
[70] Olbrich ARM, Schimmer S, Heeg K, et al. Effective postexposure treatment of retrovirus-induced disease with immunostimulatory DNA containing CpG motifs[J]. J Virol, 2002, 36:11397-11404.
[71] Wang Y, Abel K, Lantz K, et al. The Toll-like receptor 7(TLR7) agonist, imiquimod, and the TLR9 agonist, CpG ODN, induce antiviral cytokines and chemokines but do not prevent vaginal transmission of simian immunodeficiency virus when applied intravaginally to rhesus macaques[J]. J Virol, 2005, 22:14355-14370.
[72] Evans DR, Guy HI. Mammalian pyrimidine biosynthesis:fresh insights into an ancient pathway[J]. J Biol Chem, 2004, 32:33035-33038.
[73] Chen S, Ding S, Yin Y, et al. Suppression of pyrimidine biosynthesis by targeting DHODH enzyme robustly inhibits rotavirus replication[J]. Antiviral Res, 2019, 167:35-44.
[74] Reis RAG, Calil FA, Feliciano PR, et al. The dihydroorotate dehydrogenases:past and present[J]. Arch Biochem Biophys, 2017, 632:175-191.
[75] Munier-Lehmann HLN, Vidalain PO, Tangy FDR, et al. On dihydroorotate dehydrogenases and their inhibitors and uses[J]. J Med Chem, 2013, 56:3148-3167.
[76] Hoffmann HH, Kunz A, Simon VA, et al. Broad-spectrum antiviral that interferes with de novo pyrimidine biosynthesis[J]. Proc Natl Acad Sci U S A, 2011, 14:5777-5782.
[77] Luthra P, Naidoo J, Pietzsch CA, et al. Inhibiting pyrimidine biosynthesis impairs Ebola virus replication through depletion of nucleoside pools and activation of innate immune responses[J]. Antiviral Res, 2018, 158:288-302.
[78] Tan YH, Driscoll JS, Mui SM. Dihydroorotate dehydrogenase inhibitors for the treatment of viral-mediated diseases:US, 6841561[P]. 2005-01-11.
[79] Wang QY, Bushell S, Qing M, et al. Inhibition of dengue virus through suppression of host pyrimidine biosynthesis[J]. J Virol, 2011, 13:6548-6556.
[80] Chung DH, Golden JE, Adcock RS, et al. Discovery of a broad-spectrum antiviral compound that inhibits pyrimidine biosynthesis and establishes a type 1 interferon-independent antiviral state[J]. Antimicrob Agents Chemother, 2016, 60:4552-4562.
[81] Lucas-Hourani M, Dauzonne D, Jorda P, et al. Inhibition of pyrimidine biosynthesis pathway suppresses viral growth through innate immunity[J]. PLoS Pathog, 2013, 9:10.
[82] Wang Y, Wang W, Xu L, et al. Cross talk between nucleotide synthesis pathways with cellular immunity in constraining hepatitis E virus replication[J]. Antimicrob Agents Chemother, 2016, 60:2834-2848.
[83] Yang Y, Cao L, Gao H, et al. Discovery, optimization, and target identification of novel potent broad-spectrum antiviral inhibitors[J]. J Med Chem, 2019, 62:4056-4073.
[84] Adler TK, Albert A. The biological and physical properties of the azaindoles[J]. J Med Chem, 1963, 5:480-483.
[85] Enumula S, Pangal A, Gazge M, et al. Diverse pharmacological aspects of benzimidazole derivatives:a review[J]. Res J Chem Sci, 2014, 4:78-88.
[86] Tonelli M, Novelli F, Tasso B, et al. Antiviral activity of benzimidazole derivatives. Novel anti-CVB-5, anti-RSV and anti-Sb-1 agents[J]. Bioorg Med Chem, 2014, 17:4893-4909.
[87] Burgeson JR, Moore AL, Gharaibeh DN, et al. Discovery and optimization of potent broad-spectrum arenavirus inhibitors derived from benzimidazole and related heterocycles[J]. Bioorg Med Chem Lett, 2013, 23:750-756.
[88] Cohen SA. Use of nitazoxanide as a new therapeutic option for persistent diarrhea:a pediatric perspective[J]. Curr Med Res Opin, 2005, 7:999-1004.
[89] Fox LM, Saravolatz LD. Nitazoxanide:a new thiazolide antiparasitic agent[J]. Clin Infect Dis, 2005, 8:1173-1180.
[90] Rossignol JF, Frazia SL, Chiappa L, et al. Thiazolides, a new class of anti-influenza molecules targeting viral hemagglutinin at the post-translational level[J]. J Biol Chem, 2009, 43:29798-29808.
[91] Broekhuysen J, Stockis A, Lins RL, et al. Nitazoxanide:pharmacokinetics and metabolism in man[J]. Int J Clin Pharmacol Ther, 2000, 8:387-394.
[92] Rossignol JF. Nitazoxanide:a first-in-class broad-spectrum antiviral agent[J]. Antiviral Res, 2014, 110:94-103.
[93] De Carvalho LP, Darby CM, Rhee KY, et al. Nitazoxanide disrupts membrane potential and intra-bacterial pH homeostasis of Mycobacterium tuberculosis[J]. ACS Med Chem Lett, 2011, 2:849-854.
[94] Jasenosky LD, Cadena C, Mire CE, et al. The FDA-approved oral drug nitazoxanide amplifies host antiviral responses and inhibits Ebola virus[J]. iScience, 2019, 19:1279-1290.
[95] Rossignol JF, El-Gohary YM. Nitazoxanide in the treatment of viral gastroenteritis:a randomized double-blind placebo-controlled clinical trial[J]. Aliment Pharmacol Ther, 2006, 10:1423-1430.
[96] Frazia SL, Ciucci A, Arnoldi F, et al. Thiazolides, a new class of antiviral agents effective against rotavirus infection, target viral morphogenesis, inhibiting viroplasm formation[J]. J Virol, 2013, 20:11096-11106.
[97] Korba BE, Montero AB, Farrar K, et al. Nitazoxanide, tizoxanide and other thiazolides are potent inhibitors of hepatitis B virus and hepatitis C virus replication[J]. Antiviral Res, 2008, 77:56-63.
[98] Shi Z, Wei J, Deng X, et al. Nitazoxanide inhibits the replication of Japanese encephalitis virus in cultured cells and in a mouse model[J]. Virol J, 2014, 11:10.
[99] Kozlovskaya LI,Andrei G, Orlov AA, et al. Antiviral activity spectrum of phenoxazine nucleoside derivatives[J]. Antiviral Res, 2019, 163:117-124.
[100] Gardarsson H, Kale AS, Sigurdsson ST. Structure-function relationships of phenoxazine nucleosides for identification of mismatches in duplex DNA by fluorescence spectroscopy[J]. Chembiochem, 2011, 4:567-575.
[101] Iwata A, Yamaguchi T, Sato K, et al. Suppression of proliferation of poliovirus and porcine parvovirusbynovel phenoxazines,2-amino-4,4 alpha-dihydro-4 alpha-7-dimethyl-3H-phenoxazine-3-one and 3-amino-1,4 alpha-dihydro-4 alpha-8-dimethyl-2H-phenoxazine-2-one[J]. Biol Pharm Bull, 2005, 5:905-907.
[102] Hayashi K, Hayashi T, Tomoda A. Phenoxazine derivatives inactivate human cytomegalovirus, herpes simplex virus-1, and herpes simplex virus-2 in vitro[J]. J Pharmacol Sci, 2008, 3:369-375.
[103] Edwards TE, Cekan P, Reginsson GW, et al. Crystal structure of a DNA containing the planar, phenoxazine-derived bi-functional spectroscopic probe C[J]. Nucleic Acids Res, 2011, 10:4419-4426.
[104] Tintori C, Iovenitti G, Ceresola ER, et al. Rhodanine derivatives as potent anti-HIV and anti-HSV microbicides[J]. PLoS One, 2018, 13:6.
[105] Speerstra S, Chistov AA, Proskurin GV, et al. Antivirals acting on viral envelopes via biophysical mechanisms of action[J]. Antiviral Res, 2018, 149:164-173.
[106] Mayaux JF, Bousseau A, Pauwels R, et al. Triterpene derivatives that block entry of human immunodeficiency virus type 1 into cells[J]. Proc Natl Acad Sci U S A, 1994, 9:3564-3568.
[107] Yu M, Si L, Wang Y, et al. Discovery of pentacyclic triterpenoids as potential entry inhibitors of influenza viruses[J]. J Med Chem, 2014, 57:10058-10071.
[108] Yu F, Wang Q, Zhang Z, et al. Development of oleanane-type triterpenes as a new class of HCV entry inhibitors[J]. J Med Chem, 2013, 56:4300-4319.
[109] Si L, Meng K, Tian Z, et al. Triterpenoids manipulate a broad range of virus-host fusion via wrapping the HR2 domain prevalent in viral envelopes[J]. Sci Adv, 2018, 4:11.
[110] Matsuda S, Koyasu S. Mechanisms of action of cyclosporine[J]. Immunopharmacology, 2000, 47:119-125.
[111] Bienkowska-Haba M, Williams C, Kim SM, et al. Cyclophilins facilitate dissociation of the human papillomavirus type 16 capsid protein L1 from the L2/DNA complex following virus entry[J]. J Virol, 2012, 18:9875-9887.
[112] De Wilde AH, Zevenhoven-Dobbe JC, Van Der Meer Y, et al. Cyclosporin A inhibits the replication of diverse coronaviruses[J]. J Gen Virol, 2011, 11:2542.
[113] Kitchin JES, Pomeranz MK, Pak G, et al. Rediscovering mycophenolic acid:a review of its mechanism, side effects, and potential uses[J]. J Am Acad Dermatol, 1997, 3:445-449.
[114] Cline JC, Nelson JD, Gerzon K, et al. In vitro antiviral activity of mycophenolic acid and its reversal by guanine-type compounds[J]. Appl Environ Microbiol, 1969, 1:14-20.
[115] Wang Y, Zhou X, Yannick D, et al. Calcineurin inhibitors stimulate and mycophenolic acid inhibits replication of hepatitis E virus[J]. Gastroenterology, 2014, 7:1775-1783.
[116] Chapuis AG, Rizzardi GP, Agostino C, et al. Effects of mycophenolic acid on human immunodeficiency virus infection in vitro and in vivo[J]. Nat Med, 2000, 6:762-768.
[117] Chung DH, Sun Y, Parker WB, et al. Ribavirin reveals a lethal threshold of allowable mutation frequency for Hantaan virus[J]. J Virol, 2007, 81:11722-11729.
[118] Diamond MS, Zachariah M, Harris E. Mycophenolic acid inhibits dengue virus infection by preventing replication of viral RNA[J]. Virology, 2002, 2:211-221.
[119] Gong ZJ, De Meyer S, Clarysse C, et al. Mycophenolic acid, an immunosuppressive agent, inhibits HBV replication in vitro[J]. J Viral Hepat, 1999, 3:229-236.
[120] Henry SD, Metselaar HJ, Lonsdale RCB, et al. Mycophenolic acid inhibits hepatitis C virus replication and acts in synergy with cyclosporin A and interferon-α[J]. Gastroenterology, 2006, 5:1452-1462.
[121] Morrey JD, Smee DF, Sidwell RW, et al. Identification of active antiviral compounds against a New York isolate of West Nile virus[J]. Antiviral Res, 2002, 55:107-116.
[122] Chang J, Warren TK, Zhao X, et al. Small molecule inhibitors of ER α-glucosidases are active against multiple hemorrhagic fever viruses[J]. Antiviral Res, 2013, 98:432-440.
[123] Durantel D. Celgosivir, an α-glucosidase I inhibitor for the potential treatment of hepatitis C virus infection[J]. Curr Opin Investig Drugs, 2009, 10:860-870.
[124] Rathore APS, Paradkar PN, Watanabe S, et al. Celgosivir treatment misfolds dengue virus NS1 protein, induces cellular pro-survival genes and protects against lethal challenge mouse model[J]. Antiviral Res, 2011, 92:453-460.
[125] Helenius A, Aebi M. Roles of N-linked glycans in the endoplasmic reticulum[J]. Annu Rev Biochem, 2004, 1:1019-1049.
[126] Wardrop DJ, Waidyarachchi SL. Synthesis and biological activity of naturally occurring α-glucosidase inhibitors[J]. Nat Prod Rep, 2010, 10:1431-1468.
[127] Reisen F, Zhang X, Gabriel D, et al. Benchmarking of multivariate similarity measures for high-content screening fingerprints in phenotypic drug discovery[J]. J Biomol Screen, 2013, 10:1284-1297.
1.修思雨, 张健, 鞠翰, 贾瑞芳, 黄兵, 展鹏, 刘新泳.抗流感病毒药物靶标及其小分子抑制剂的研究进展[J]. 药学学报, 2020,55(4): 611-626
2.宋淑, 高萍, 展鹏, 刘新泳.丙型肝炎病毒抑制剂研究进展[J]. 药学学报, 2020,55(4): 652-668