药学学报, 2020, 55(4): 694-702
引用本文:
任玉洁, 张硕, 魏粉菊, 刘新泳, 展鹏. 埃博拉病毒抑制剂研究新进展[J]. 药学学报, 2020, 55(4): 694-702.
REN Yu-jie, ZHANG Shuo, WEI Fen-ju, LIU Xin-yong, ZHAN Peng. Recent advances in the discovery and development of Ebola virus inhibitors[J]. Acta Pharmaceutica Sinica, 2020, 55(4): 694-702.

埃博拉病毒抑制剂研究新进展
任玉洁, 张硕, 魏粉菊, 刘新泳, 展鹏
山东大学药学院药物化学研究所, 化学生物学教育部重点实验室, 山东 济南 250012
摘要:
埃博拉病毒具有高度传染性,可引起严重出血热的暴发,致死率高达90%。目前没有疫苗、生物制剂或特异性的小分子化合物类防治药物。近几年,大量文献报道了埃博拉病毒抑制剂,本文综述了该领域的研究新进展。
关键词:    埃博拉病毒      丝状病毒      抗病毒      抑制剂      小分子化合物     
Recent advances in the discovery and development of Ebola virus inhibitors
REN Yu-jie, ZHANG Shuo, WEI Fen-ju, LIU Xin-yong, ZHAN Peng
Department of Medicinal Chemistry, Key Laboratory of Chemical Biology(Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
Abstract:
Ebola virus is extremely virulent and highly contagious. Ebola virus causes outbreaks of severe hemorrhagic fever, with human mortality rates of up to 90%. There is currently no preventive or therapeutic treatment in the form of vaccines, biological or small molecular agents. Currently, a lot of anti-Ebola virus agents have been reported. Here, we review the latest advances in this field.
Key words:    Ebola virus    filovirus    antiviral    inhibitor    small molecule   
收稿日期: 2019-10-30
DOI: 10.16438/j.0513-4870.2019-0859
基金项目: 国家自然科学基金重点国际合作研究项目(81420108027);山东省重点研发计划(2017CXGC1401,2019JZZY021011).
通讯作者: 刘新泳,Tel:86-531-88380270,E-mail:xinyongl@sdu.edu.cn;展鹏,E-mail:zhanpeng1982@sdu.edu.cn
Email: xinyongl@sdu.edu.cn;zhanpeng1982@sdu.edu.cn
相关功能
PDF(723KB) Free
打印本文
0
作者相关文章
任玉洁  在本刊中的所有文章
张硕  在本刊中的所有文章
魏粉菊  在本刊中的所有文章
刘新泳  在本刊中的所有文章
展鹏  在本刊中的所有文章

参考文献:
[1] Malvy D, McElroy AK, de Clerck H, et al. Ebola virus disease[J]. Lancet, 2019, 393:936-948.
[2] Li YH, Chen SP. Evolutionary history of Ebola virus[J]. Epidemiol Infect, 2014, 142:1138-1145.
[3] Feldmann H, Geisbert TW. Ebola haemorrhagic fever[J]. Lancet, 2011, 377:849-862.
[4] Picazo E, Giordanetto F. Small molecule inhibitors of ebola virus infection[J]. Drug Discov Today, 2015, 20:277-286.
[5] Messaoudi I, Amarasinghe GK, Basler CF. Filovirus pathogenesis and immune evasion:insights from Ebola virus and Marburg virus[J]. Nat Rev Microbiol, 2015, 13:663-676.
[6] Cui Q, Cheng H, Xiong R, et al. Identification of diaryl-quinoline compounds as entry inhibitors of Ebola virus[J]. Viruses, 2018, 10:678.
[7] Chandran K, Sullivan NJ, Felbor U, et al. Endosomal proteolysis of the Ebola virus glycoprotein is necessary for infection[J]. Science, 2005, 308:1643-1645.
[8] Schornberg K, Matsuyama S, Kabsch K, et al. Role of endosomal cathepsins in entry mediated by the Ebola virus glycoprotein[J]. J Virol, 2006, 80:4174-4178.
[9] Gnirss K, Kuhl A, Karsten C, et al. Cathepsins B and L activate Ebola but not Marburg virus glycoproteins for efficient entry into cell lines and macrophages independent of TMPRSS2 expression[J]. Virology, 2012, 424:3-10.
[10] Shah PP, Wang T, Kaletsky RL, et al. A small-molecule oxocarbazate inhibitor of human cathepsin L blocks severe acute respiratory syndrome and ebola pseudotype virus infection into human embryonic kidney 293T cells[J]. Mol Pharmacol, 2010, 78:319-324.
[11] Elshabrawy HA, Fan J, Haddad CS, et al. Identification of a broad-spectrum antiviral small molecule against severe acute respiratory syndrome coronavirus and Ebola, Hendra, and Nipah viruses by using a novel high-throughput screening assay[J]. J Virol, 2014, 88:4353-4365.
[12] Carette JE, Raaben M, Wong AC, et al. Ebola virus entry requires the cholesterol transporter Niemann-Pick C1[J]. Nature, 2011, 477:340-343.
[13] Cenedella RJ. Cholesterol synthesis inhibitor U18666A and the role of sterol metabolism and trafficking in numerous pathophysiological processes[J]. Lipids, 2009, 44:477-487.
[14] Rodriguez-Lafrasse C, Rousson R, Bonnet J, et al. Abnormal cholesterol metabolism in imipramine-treated fibroblast cultures. Similarities with Niemann-Pick type C disease[J]. Biochim Biophys Acta, 1990, 1043:123-128.
[15] Cote M, Misasi J, Ren T, et al. Small molecule inhibitors reveal Niemann-Pick C1 is essential for Ebola virus infection[J]. Nature, 2011, 477:344-348.
[16] Lee K, Ren T, Cote M, et al. Inhibition of Ebola virus infection:identification of Niemann-Pick C1 as the target by optimization of a chemical probe[J]. ACS Med Chem Lett, 2013, 4:239-243.
[17] Tian Y. Study on N-Containing Heterocyclic HIV-1 NNRTI and Ebola Virus Entry Inhibitors (含N芳杂环类HIV-1非核苷类逆转录酶抑制剂及埃博拉病毒侵入抑制剂的研究)[D]. Jinan:Shandong University, 2017.
[18] Liu H, Tian Y, Lee K, et al. Identification of potent Ebola virus entry inhibitors with suitable properties for in vivo studies[J]. J Med Chem, 2018, 61:6293-6307
[19] Johansen LM, Brannan JM, Delos SE, et al. FDA-approved selective estrogen receptor modulators inhibit Ebola virus infection[J]. Sci Transl Med, 2013, 5:190ra179.
[20] Shoemaker CJ, Schornberg KL, Delos SE, et al. Multiple cationic amphiphiles induce a Niemann-Pick C phenotype and inhibit Ebola virus entry and infection[J]. PLoS One, 2013, 8:e56265.
[21] Yonezawa A, Cavrois M, Greene WC. Studies of Ebola virus glycoprotein-mediated entry and fusion by using pseudotyped human immunodeficiency virus type 1 virions:involvement of cytoskeletal proteins and enhancement by tumor necrosis factor alpha[J]. J Virol, 2005, 79:918-926.
[22] Sakurai Y, Kolokoltsov AA, Chen CC, et al. Two-pore channels control Ebola virus host cell entry and are drug targets for disease treatment[J]. Science, 2015, 347:995-998.
[23] Zhu MX, Ma J, Parrington J, et al. Calcium signaling via two-pore channels:local or global, that is the question[J]. Am J Physiol Cell Physiol, 2010, 298:C430-441.
[24] Kolokoltsov AA, Saeed MF, Freiberg AN, et al. Identification of novel cellular targets for therapeutic intervention against Ebola virus infection by siRNA screening[J]. Drug Dev Res, 2009, 70:255-265.
[25] Johnson JC, Martinez O, Honko AN, et al. Pyridinyl imidazole inhibitors of p38 MAP kinase impair viral entry and reduce cytokine induction by Zaire ebolavirus in human dendritic cells[J]. Antiviral Res, 2014, 107:102-109.
[26] Furuta Y, Takahashi K, Fukuda Y, et al. In vitro and in vivo activities of anti-influenza virus compound T-705[J]. Antimicrob Agents Chemother, 2002, 46:977-981.
[27] Sangawa H, Komeno T, Nishikawa H, et al. Mechanism of action of T-705 ribosyl triphosphate against influenza virus RNA polymerase[J]. Antimicrob Agents Chemother, 2013, 57:5202-5208.
[28] Espy N, Nagle E, Pfeffer B, et al. T-705 induces lethal mutagenesis in Ebola and Marburg populations in macaques[J]. Antiviral Res, 2019, 170:104529.
[29] Oestereich L, Ludtke A, Wurr S, et al. Successful treatment of advanced Ebola virus infection with T-705(favipiravir) in a small animal model[J]. Antiviral Res, 2014, 105:17-21.
[30] Furuta Y, Komeno T, Nakamura T. Favipiravir (T-705), a broad spectrum inhibitor of viral RNA polymerase[J]. Proc Jpn Acad Ser B Phys Biol Sci, 2017, 93:449-463.
[31] Warren TK, Wells J, Panchal RG, et al. Protection against filovirus diseases by a novel broad-spectrum nucleoside analogue BCX4430[J]. Nature, 2014, 508:402-405.
[32] Gao J, Yin L. Drug development for controlling Ebola epidemic-a race against time[J]. Drug Discov Ther, 2014, 8:229-231.
[33] Warren TK, Jordan R, Lo MK, et al. Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys[J]. Nature, 2016, 531:381-385.
[34] Brown CS, Lee MS, Leung DW, et al. In silico derived small molecules bind the filovirus VP35 protein and inhibit its polymerase cofactor activity[J]. J Mol Biol, 2014, 426:2045-2058.
[35] de Clercq E, Montgomery JA. Broad-spectrum antiviral activity of the carbocyclic analog of 3-deazaadenosine[J]. Antiviral Res, 1983, 3:17-24.
[36] Huggins J, Zhang ZX, Bray M. Antiviral drug therapy of filovirus infections:S-adenosylhomocysteine hydrolase inhibitors inhibit Ebola virus in vitro and in a lethal mouse model[J]. J Infect Dis, 1999, 179 Suppl 1:S240-247.
[37] Bray M, Driscoll J, Huggins JW. Treatment of lethal Ebola virus infection in mice with a single dose of an S-adenosyl-L-homocysteine hydrolase inhibitor[J]. Antiviral Res, 2000, 45:135-147.
[38] Liu Y, Lee MS,Olson MA, et al. Bimolecular complementation to visualize filovirus VP40-host complexes in live mammalian cells:toward the identification of budding inhibitors[J]. Adv Virol, 2011, 2011.
[39] Garcia M, Cooper A, Shi W, et al. Productive replication of Ebola virus is regulated by the c-Abl1 tyrosine kinase[J]. Sci Transl Med, 2012, 4:123ra124.
[40] Chan SY, Speck RF, Ma MC, et al. Distinct mechanisms of entry by envelope glycoproteins of Marburg and Ebola (Zaire) viruses[J]. J Virol, 2000, 74:4933-4937.
[41] Chang J, Warren TK, Zhao X, et al. Small molecule inhibitors of ER alpha-glucosidases are active against multiple hemorrhagic fever viruses[J]. Antiviral Res, 2013, 98:432-440.
[42] Warren TK, Warfield KL, Wells J, et al. Antiviral activity of a small-molecule inhibitor of filovirus infection[J]. Antimicrob Agents Chemother, 2010, 54:2152-2159.
[43] Kinch MS, Yunus AS, Lear C, et al. FGI-104:a broad-spectrum small molecule inhibitor of viral infection[J]. Am J Transl Res, 2009, 1:87-98.
[44] Aman MJ, Kinch MS, Warfield K, et al. Development of a broad-spectrum antiviral with activity against Ebola virus[J]. Antiviral Res, 2009, 83:245-251.
[45] Selakovic Z, Opsenica D, Eaton B, et al. A limited structural modification results in a significantly more efficacious diazachrysene-based filovirus inhibitor[J]. Viruses, 2012, 4:1279-1288.
[46] Madrid PB, Chopra S, Manger ID, et al. A systematic screen of FDA-approved drugs for inhibitors of biological threat agents[J]. PLoS One, 2013, 8:e60579.
[47] Smith DR, McCarthy S, Chrovian A, et al. Inhibition of heat-shock protein 90 reduces Ebola virus replication[J]. Antiviral Res, 2010, 87:187-194.
[48] Yermolina MV, Wang J, Caffrey M, et al. Discovery, synthesis, and biological evaluation of a novel group of selective inhibitors of filoviral entry[J]. J Med Chem, 2011, 54:765-781.
相关文献:
1.徐淑静, 刘新泳, 展鹏.呼吸道合胞病毒抑制剂研究新进展[J]. 药学学报, 2020,55(4): 597-610
2.修思雨, 张健, 鞠翰, 贾瑞芳, 黄兵, 展鹏, 刘新泳.抗流感病毒药物靶标及其小分子抑制剂的研究进展[J]. 药学学报, 2020,55(4): 611-626
3.宋淑, 高萍, 展鹏, 刘新泳.丙型肝炎病毒抑制剂研究进展[J]. 药学学报, 2020,55(4): 652-668
4.姜向毅, 李敬, 魏晓颖, 展鹏, 刘新泳.基孔肯雅病毒抑制剂研究进展[J]. 药学学报, 2020,55(4): 754-762
5.王萍, 张高红, 向思颖, 杨柳萌, 唐成润, 马晓东, 郑永唐.二甲苯酮类非核苷类逆转录酶抑制剂的体外抗HIV-1活性[J]. 药学学报, 2016,51(11): 1704-1710
6.姜心贝, 李艳萍, 李卓荣.HCV NS5A抑制剂研究进展[J]. 药学学报, 2016,51(9): 1378-1387
7.陈勍, 郭颖.丝状病毒进入抑制剂的细胞水平评价体系的建立[J]. 药学学报, 2015,50(12): 1538-1544