药学学报, 2020, 55(4): 703-719
引用本文:
付志鹏, 周忠霞, 刘新泳, 展鹏. 天然产物抗病毒药物的研究进展[J]. 药学学报, 2020, 55(4): 703-719.
FU Zhi-peng, ZHOU Zhong-xia, LIU Xin-yong, ZHAN Peng. Advances in the study of antiviral natural products[J]. Acta Pharmaceutica Sinica, 2020, 55(4): 703-719.

天然产物抗病毒药物的研究进展
付志鹏, 周忠霞, 刘新泳, 展鹏
山东大学药学院药物化学研究所, 化学生物学教育部重点实验室, 山东 济南 250012
摘要:
长期服用抗病毒药物易导致病毒的耐药性和药物不良反应,加之某些新发病毒传染疾病仍无特异性药物。因此,新型抗病毒药物的研究一直是医药健康领域的重大科研任务。天然产物是抗病毒药物发现的重要源泉。本综述总结了近十年来具有抗病毒活性的天然产物,为药物开发提供有潜力的先导化合物。
关键词:    病毒      天然产物      抗病毒活性      先导化合物     
Advances in the study of antiviral natural products
FU Zhi-peng, ZHOU Zhong-xia, LIU Xin-yong, ZHAN Peng
Department of Medicinal Chemistry, Key Laboratory of Chemical Biology(Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
Abstract:
Long-term use of approved antiviral drugs can lead to drug resistance and side effects. On the other hand, there are currently no antiviral drugs or vaccines available to treat some newly emerging virus infections. Therefore, antiviral drugs research has always been a hot research topic in the field of medicinal chemistry. Natural products are an important source of antiviral drugs. This article reviews the progress of antiviral natural products discovered in the past decade to provide potential lead compounds for drug development.
Key words:    virus    natural product    antiviral activity    lead compound   
收稿日期: 2019-11-01
DOI: 10.16438/j.0513-4870.2019-0862
基金项目: 国家自然科学基金资助项目(81420108027,81573347);山东省重大科技创新工程(2019JZZY021011,2017CXGC1401).
通讯作者: 刘新泳,Tel:86-531-88380270,E-mail:xinyongl@sdu.edu.cn;展鹏,E-mail:zhanpeng1982@sdu.edu.cn
Email: xinyongl@sdu.edu.cn;zhanpeng1982@sdu.edu.cn
相关功能
PDF(1114KB) Free
打印本文
0
作者相关文章
付志鹏  在本刊中的所有文章
周忠霞  在本刊中的所有文章
刘新泳  在本刊中的所有文章
展鹏  在本刊中的所有文章

参考文献:
[1] Siegel L, Gulick RM. New antiretroviral agents[J]. Curr Infect Dis Rep, 2007, 9:243-251.
[2] Fang PL, Cao YL, Yan H, et al. Lindenane disesquiterpenoids with anti-HIV-1 activity from Chloranthus japonicus[J]. J Nat Prod, 2011, 74:1408-1413.
[3] Yang Y, Cao YL, Liu HY, et al. Shizukaol F:a new structural type inhibitor of HIV-1 reverse transcriptase RNase H[J]. Acta Pharm Sin (药学学报), 2012, 47:1011-1016.
[4] Nothias-Scaglia LF, Pannecouque C, Renucci F, et al. Antiviral activity of diterpene of esters on Chikungunya virus and HIV replication[J]. J Nat Prod, 2015, 78:1277-1283.
[5] Pardo-Vargas A, Ramos FA, Cirne-Santos CC, et al. Semi-synthesis of oxygenated dolabellane diterpenes with highly in vitro anti-HIV-1 activity[J]. Bioorg Med Chem Lett, 2014, 24:4381-4383.
[6] Huang YS, Lu Y, Chen CH, et al. Potent anti-HIV ingenane diterpenoids from Euphorbia ebracteolata[J]. J Nat Prod, 2019, 82:1587-1592.
[7] Liu Q, Li W, Huang L, et al. Identification, structural modification, and dichotomous effects on human immunodeficiency virus type 1(HIV-1) replication of ingenane esters from Euphorbia kansui[J]. Eur J Med Chem, 2018, 156:618-627.
[8] Jiang G, Mendes EA, Kaiser P, et al. Synergistic reactivation of latent HIV expression by ingenol-3-angelate, PEP005, targeted NF-κB signaling in combination with JQ1 induced p-TEFb activation[J]. PLoS Pathog, 2015, 11:e1005066.
[9] Pandeló José D, Bartholomeeusen K, da Cunha RD, et al. Reactivation of latent HIV-1 by new semi-synthetic ingenol esters[J]. Virology, 2014, 462-463:328-339.
[10] Huang L, Ho P, Yu J, et al. Picomolar dichotomous activity of gnidimacrin against HIV-1[J]. PLoS One, 2011, 6:e26677.
[11] Vidal V, Potterat O, Louvel S, et al. Library-based discovery and characterization of daphnane diterpenes as potent and selective HIV inhibitors in Daphne gnidium[J]. J Nat Prod, 2012, 75:414-419.
[12] Zhang D, Guo J, Zhang M, et al. Oxazole-containing diterpenoids from cell cultures of Salvia miltiorrhiza and their anti-HIV1 activities[J]. J Nat Prod, 2017, 80:3241-3246.
[13] Osorio AA, Muñóz A, Torres-Romero D, et al. Olean-18-ene triterpenoids from Celastraceae species inhibit HIV replication targeting NF-κB and Sp1 dependent transcription[J]. Eur J Med Chem, 2012, 52:295-303.
[14] Callies O, Bedoya LM, Beltrán M, et al. Isolation, structural modification, and HIV inhibition of pentacyclic lupane-type triterpenoids from Cassine xylocarpa and Maytenus cuzcoina[J]. J Nat Prod, 2015, 78:1045-1055.
[15] Zhang SY, Meng L, Gao WY, et al. Advances on biological activities of coumarins[J]. China J Chin Mater Med (中国中药杂志), 2005, 30:410-414.
[16] Esposito F, Ambrosio FA, Maleddu R, et al. Chromenone derivatives as a versatile scaffold with dual mode of inhibition of HIV-1 reverse transcriptase-associated Ribonuclease H function and integrase activity[J]. Eur J Med Chem, 2019, 182:111617.
[17] Sonar VP, Corona A, Distinto S, et al. Natural product-inspired esters and amides of ferulic and caffeic acid as dual inhibitors of HIV-1 reverse transcriptase[J]. Eur J Med Chem, 2017, 130:248-260.
[18] Kashman Y, Gustafson KR, Fuller RW, et al. The calanolides, a novel HIV-inhibitory class of coumarin derivatives from the tropical rainforest tree, Calophyllum lanigerum[J]. J Med Chem, 1992, 35:2735-2743.
[19] Xue H, Lu X, Zheng P, et al. Highly suppressing wild-type HIV-1 and Y181C mutant HIV-1 strains by 10-chloromethyl-11-demethyl-12-oxo-calanolide A with druggable profile[J]. J Med Chem, 2010, 53:1397-1401.
[20] Dong B, Ma T, Zhang T, et al. Anti-HIV-1 activity and structure-activity relationship of pyranocoumarin analogs[J]. Acta Pharm Sin (药学学报), 2011, 46:35-38.
[21] Zhang HJ, Rumschlag-Booms E, Guan YF, et al. Potent inhibitor of drug-resistant HIV1 strains identified from the medicinal plant Justicia gendarussa[J]. J Nat Prod, 2017, 80:1798-1807.
[22] Zhang HJ, Rumschlag-Booms E, Guan YF, et al. Anti-HIV diphyllin glycosides from Justicia gendarussa[J]. Phytochemistry, 2017, 136:94-100.
[23] Prasad S, Tyagi AK. Curcumin and its analogues:a potential natural compound against HIV infection and AIDS[J]. Food Funct, 2015, 6:3412-3419.
[24] Zhang HS, Zhou Y, Wu MR, et al. Resveratrol inhibited Tat-induced HIV-1 LTR transactivation via NAD+-dependent SIRT1 activity[J]. Life Sci, 2009, 85:484-489.
[25] Pal Singh I, Bharate SB. Phloroglucinol compounds of natural origin[J]. Nat Prod Rep, 2006, 23:558-591.
[26] Chauthe SK, Bharate SB, Sabde S, et al. Biomimetic synthesis and anti-HIV activity of dimeric phloroglucinols[J]. Bioorg Med Chem, 2010, 18:2029-2036.
[27] Kamng'ona A, Moore JP, Lindsey G, et al. Inhibition of HIV-1 and M-MLV reverse transcriptases by a major polyphenol (3,4,5 tri-O-galloylquinic acid) present in the leaves of the South African resurrection plant, Myrothamnus flabellifolia[J]. J Enzyme Inhib Med Chem, 2011, 26:843-853.
[28] Chaves Valadão AL, Abreu CM, Dias JZ, et al. Natural plant alkaloid (emetine) inhibits HIV-1 replication by interfering with reverse transcriptase activity[J]. Molecules, 2015, 20:11474-11489.
[29] McCormick JL, McKee TC, Cardellina JH, et al. HIV inhibitory natural products. 26. Quinoline alkaloids from Euodia roxburghiana[J]. J Nat Prod, 1996, 59:469-471.
[30] Ahmed N, Brahmbhatt KG, Sabde S, et al. Synthesis and anti-HIV activity of alkylated quinoline 2,4-diols[J]. Bioorg Med Chem, 2010, 18:2872-2879.
[31] Jadulco RC, Pond CD, Van Wagoner RM, et al. 4-Quinolone alkaloids from Melochia odorata[J]. J Nat Prod, 2014, 77:183-187.
[32] Esposito F, Carli I, Del Vecchio C, et al. Sennoside A, derived from the traditional chinese medicine plant Rheum L., is a new dual HIV-1 inhibitor effective on HIV-1 replication[J]. Phytomedicine, 2016, 23:1383-1391.
[33] He X, Wang Y, Luo RH, et al. Dimeric pyranonaphthoquinone glycosides with anti-HIV and cytotoxic activities from a soil-derived streptomyces[J]. J Nat Prod, 2019, 82:1813-1819.
[34] Lee J, Oh WK, Ahn JS, et al. Prenylisoflavonoids from Erythrina senegalensis as novel HIV-1 protease inhibitors[J]. Planta Med, 2009, 75:268-270.
[35] Omolo JJ, Maharaj V, Naidoo D, et al. Bioassay-guided investigation of the Tanzanian plant Pyrenacantha kaurabassana for potential anti-HIV-active compounds[J]. J Nat Prod, 2012, 75:1712-1716.
[36] Guo RH, Geng CA, Huang XY, et al. Synthesis of hemslecin A derivatives:a new class of hepatitis B virus inhibitors[J]. Bioorg Med Chem Lett, 2013, 23:1201-1205.
[37] Ma WH, Huang H, Zhou P, et al. Schisanwilsonenes A-C, anti-HBV carotane sesquiterpenoids from the fruits of Schisandra wilsoniana[J]. J Nat Prod, 2009, 72:676-678.
[38] Zhang Q, Jiang ZY, Luo J, et al. Anti-HBV agents. Part 2:Synthesis and in vitro anti-hepatitis B virus activities of alisol A derivatives[J]. Bioorg Med Chem Lett, 2009, 19:2148-2153.
[39] Zhang Q, Jiang ZY, Luo J, et al. Anti-HBV agents. Part 3:Preliminary structure-activity relationships of tetra-acylalisol A derivatives as potent hepatitis B virus inhibitors[J]. Bioorg Med Chem Lett, 2009, 19:6659-6665.
[40] Zhang YB, Luo D, Yang L, et al. Matrine-type alkaloids from the roots of Sophora flavescens and their antiviral activities against the hepatitis B virus[J]. J Nat Prod, 2018, 81:2259-2265.
[41] Zhang YB, Zhang XL, Chen NH, et al. Four matrine-based alkaloids with antiviral activities against HBV from the seeds of Sophora alopecuroides[J]. Org Lett, 2017, 19:424-427.
[42] Zhang YB, Yang L, Luo D, et al. Sophalines E-I, five quinolizidine-based alkaloids with antiviral activities against the hepatitis B virus from the seeds of Sophora alopecuroides[J]. Org Lett, 2018, 20:5942-5946.
[43] Peng ZG, Fan B, Du NN, et al. Small molecular compounds that inhibit hepatitis C virus replication through destabilizing heat shock cognate 70 messenger RNA[J]. Hepatology, 2010, 52:845-853.
[44] Du NN, Li X, Wang YP, et al. Synthesis, structure-activity relationship and biological evaluation of novel N-substituted matrinic acid derivatives as host heat-stress cognate 70(Hsc70) down-regulators[J]. Bioorg Med Chem Lett, 2011, 21:4732-4735.
[45] Wan CX, Zhang PH, Luo JG, et al. Homoflavonoid glucosides from Ophioglossum pedunculosum and their anti-HBV activity[J]. J Nat Prod, 2011, 74:683-689.
[46] Ying C, Li Y, Leung CH, et al. Unique antiviral mechanism discovered in anti-hepatitis B virus research with a natural product analogue[J]. Proc Natl Acad Sci U S A, 2007, 104:8526-8531.
[47] Yang L, Shi LP, Chen HJ, et al. Isothiafludine, a novel non-nucleoside compound, inhibits hepatitis B virus replication through blocking pregenomic RNA encapsidation[J]. Acta Pharmacol Sin, 2014, 35:410-418.
[48] Janmanchi D, Tseng YP, Wang KC, et al. Synthesis and the biological evaluation of arylnaphthalene lignans as anti-hepatitis B virus agents[J]. Bioorg Med Chem, 2010, 18:1213-1226.
[49] Zhang F, Wang G. A review of non-nucleoside anti-hepatitis B virus agents[J]. Eur J Med Chem, 2014, 75:267-281.
[50] Wang LJ, Geng CA, Ma YB, et al. Synthesis, structure-activity relationships and biological evaluation of caudatin derivatives as novel anti-hepatitis B virus agents[J]. Bioorg Med Chem, 2012, 20:2877-2888.
[51] Wang LJ, Geng CA, Ma YB, et al. Design, synthesis, and molecular hybrids of caudatin and cinnamic acids as novel anti-hepatitis B virus agents[J]. Eur J Med Chem, 2012, 54:352-365.
[52] Yu F, Wang Q, Zhang Z, et al. Development of oleanane-type triterpenes as a new class of HCV Entry Inhibitors[J]. J Med Chem, 2013, 56:4300-4319.
[53] Wang H, Wang Q, Xiao SL, et al. Elucidation of the pharmacophore of echinocystic acid, a new lead for blocking HCV entry[J]. Eur J Med Chem, 2013, 64:160-168.
[54] Yu F, Peng Y, Wang Q, et al. Development of bivalent oleanane-type triterpenes as potent HCV entry inhibitors[J]. Eur J Med Chem, 2014, 77:258-268.
[55] Li YH, Wu ZY, Tang S, et al. Evolution of matrinic ethanol derivatives as anti-HCV agents from matrine skeleton[J]. Bioorg Med Chem Lett, 2017, 27:1962-1966.
[56] Zhang X, Lv XQ, Tang S, et al. Discovery and evolution of aloperine derivatives as a new family of HCV inhibitors with novel mechanism[J]. Eur J Med Chem, 2018, 143:1053-1065.
[57] Wang YJ, Pan KL, Hsieh TC, et al. Diosgenin, a plant-derived sapogenin, exhibits antiviral activity in vitro against hepatitis C virus[J]. J Nat Prod, 2011, 74:580-584.
[58] Salam KA, Furuta A, Noda N, et al. Inhibition of hepatitis C virus NS3 helicase by manoalide[J]. J Nat Prod, 2012, 75:650-654.
[59] Ma DL, Chan DS, Wei G, et al. Virtual screening and optimization of Type II inhibitors of JAK2 from a natural product library[J]. Chem Commun (Camb), 2014, 50:13885-13888.
[60] Yang Z, Wang Y, Zheng Z, et al. Antiviral activity of Isatis indigotica root-derived clemastanin B against human and avian influenza A and B viruses in vitro[J]. Int J Mol Med, 2013, 31:867-873.
[61] Li B, Ni Y, Zhu LJ, et al. Flavonoids from Matteuccia struthiopteris and their anti-influenza virus (H1N1) activity[J]. J Nat Prod, 2015, 78:987-995.
[62] Dao TT, Tung BT, Nguyen PH, et al. C-Methylated flavonoids from Cleistocalyx operculatus and their inhibitory effects on novel influenza A (H1N1) neuraminidase[J]. J Nat Prod, 2010, 73:1636-1642.
[63] Wang H, Wang Y, Wang W, et al. Anti-influenza virus polyketides from the acid-tolerant fungus Penicillium purpurogenum JS03-21[J]. J Nat Prod, 2011, 74:2014-2018.
[64] Fan Y, Wang Y, Liu P, et al. Indole-diterpenoids with anti-H1N1 activity from the aciduric fungus Penicillium camemberti OUCMDZ-1492[J]. J Nat Prod, 2013, 76:1328-1336.
[65] Niu S, Si L, Liu D, et al. Spiromastilactones:a new class of influenza virus inhibitors from deep-sea fungus[J]. Eur J Med Chem, 2016, 108:229-244.
[66] Botta G, Bizzarri BM, Garozzo A, et al. Carbon nanotubes supported tyrosinase in the synthesis of lipophilic hydroxytyrosol and dihydrocaffeoyl catechols with antiviral activity against DNA and RNA viruses[J]. Bioorg Med Chem, 2015, 23:5345-5351.
[67] Saladino R, Barontini M, Crucianelli M, et al. Current advances in anti-influenza therapy[J]. Curr Med Chem, 2010, 17:2101-2140.
[68] Bizzarri BM, Botta L, Capecchi E, et al. Regioselective IBX-mediated synthesis of coumarin derivatives with antioxidant and anti-influenza activities[J]. J Nat Prod, 2017, 80:3247-3254.
[69] Mair CE, Grienke U, Wilhelm A, et al. Anti-influenza triterpene saponins from the bark of Burkea africana[J]. J Nat Prod, 2018, 81:515-523.
[70] Wang J, Chen F, Liu Y, et al. Spirostaphylotrichin X from a marine-derived fungus as an antiinfluenza agent targeting RNA polymerase PB2[J]. J Nat Prod, 2018, 81:2722-2730.
[71] Chen SD, Gao H, Zhu QC, et al. Houttuynoids A-E, anti-herpes simplex virus active flavonoids with novel skeletons from Houttuynia cordata[J]. Org Lett, 2012, 14:1772-1775.
[72] Li JJ, Chen GD, Fan HX, et al. Houttuynoid M, an anti-HSV active houttuynoid from Houttuynia cordata featuring a bis-houttuynin chain tethered to a flavonoid core[J]. J Nat Prod, 2017, 80:3010-3013.
[73] Jian J, Fan J, Yang H, et al. Total synthesis of the flavonoid natural product houttuynoid A[J]. J Nat Prod, 2018, 81:371-377.
[74] Li T, Liu L, Wu H, et al. Anti-herpes simplex virus type 1 activity of houttuynoid A, a new flavonoid from Houttuynia cordata Thunb[J]. Antiviral Res, 2017, 144:273-280.
[75] Cheng SY, Huang KJ, Wang SK, et al. Antiviral and anti-inflammatory metabolites from the soft coral Sinularia capillosa[J]. J Nat Prod, 2010, 73:771-775.
[76] Cheng SY, Wang SK, Chiou SF, et al. Cembranoids from the Octocoral Sarcophyton ehrenbergi[J]. J Nat Prod, 2010, 73:197-203.
[77] Cui H, Xu B, Wu T, et al. Potential antiviral lignans from the roots of Saururus chinensis with activity against Epstein-Barr virus lytic replication[J]. J Nat Prod, 2014, 77:100-110.
[78] Wu T, Wang Y, Yuan Y, et al. Antiviral activity of topoisomerase II catalytic inhibitors against Epstein-Barr virus[J]. Antiviral Res, 2014, 107:95-101.
[79] Lin Y, Wang Q, Gu Q, et al. Semisynthesis of (-)-rutamarin derivatives and their inhibitory activity on Epstein-Barr virus lytic replication[J]. J Nat Prod, 2017, 80:53-60.
[80] Ray B, Hutterer C, Bandyopadhyay SS, et al. Chemically engineered sulfated glucans from rice bran exert strong antiviral activity at the stage of viral entry[J]. J Nat Prod, 2013, 76:2180-2188.
[81] Zhang GJ, Li YH,J DJ, et al. Anti-coxsackie virus B diterpenes from the roots of Illicium jiadifengpi[J]. Tetrahedron, 2013, 69:1017-1023.
[82] Wang YD, Zhang GJ, Qu J, et al. Diterpenoids and sesquiterpenoids from the roots of Illicium majus[J]. J Nat Prod, 2013, 76:1976-1983.
[83] Ma SG, Gao RM, Li YH, et al. Antiviral spirooliganones A and B with unprecedented skeletons from the roots of Illicium oligandrum[J]. Org Lett, 2013, 15:4450-4453.
[84] Zhao N, Ren X, Ren J, et al. Total syntheses of (-)-spirooliganones A and B and their diastereoisomers:absolute stereochemistry and inhibitory activity against coxsackie virus B3[J]. Org Lett, 2015, 17:3118-3121.
[85] Zhang W, Tao J, Yang X, et al. Antiviral effects of two Ganoderma lucidum triterpenoids against enterovirus 71 infection[J]. Biochem Biophys Res Commun, 2014, 449:307-312.
[86] Chen SG, Cheng ML, Chen KH, et al. Antiviral activities of Schizonepeta tenuifolia Briq. against enterovirus 71 in vitro and in vivo[J]. Sci Rep, 2017, 7:935.
[87] Kuo KK, Chang JS, Wang KC, et al. Water extract of Glycyrrhiza uralensis inhibited enterovirus 71 in a human foreskin fibroblast cell line[J]. Am J Chin Med, 2009, 37:383-394.
[88] Wang J, Chen X, Wang W, et al. Glycyrrhizic acid as the antiviral component of Glycyrrhiza uralensis Fisch. against coxsackievirus A16 and enterovirus 71 of hand foot and mouth disease[J]. J Ethnopharmacol, 2013, 147:114-121.
[89] Allard PM, Leyssen P, Martin MT, et al. Antiviral chlorinated daphnane diterpenoid orthoesters from the bark and wood of Trigonostemon cherrieri[J]. Phytochemistry, 2012, 84:160-168.
[90] Bourjot M, Leyssen P, Neyts J, et al. Trigocherrierin A, a potent inhibitor of Chikungunya virus replication[J]. Molecules, 2014, 19:3617-3627.
[91] Corlay N, Delang L, Girard-Valenciennes E, et al. Tigliane diterpenes from Croton mauritianus as inhibitors of Chikungunya virus replication[J]. Fitoterapia, 2014, 97:87-91.
[92] Bourjot M, Delang L, Nguyen VH, et al. Prostratin and 12-O-tetradecanoylphorbol 13-acetate are potent and selective inhibitors of Chikungunya virus replication[J]. J Nat Prod, 2012, 75:2183-2187.
[93] Nothias-Scaglia LF, Retailleau P, Paolini J, et al. Jatrophane diterpenes as inhibitors of Chikungunya virus replication:structure-activity relationship and discovery of a potent lead[J]. J Nat Prod, 2014, 77:1505-1512.
[94] Staveness D, Abdelnabi R, Schrier AJ, et al. Simplified bryostatin analogues protect cells from Chikungunya virus-induced cell death[J]. J Nat Prod, 2016, 79:675-679.
[95] Staveness D, Abdelnabi R,Near KE, et al. Inhibition of Chikungunya virus-induced cell death by salicylate-derived bryostatin analogues provides additional evidence for a PKC-independent pathway[J]. J Nat Prod, 2016, 79:680-684.
[96] Bourjot M, Leyssen P, Eydoux C, et al. Flacourtosides A-F, phenolic glycosides isolated from Flacourtia ramontchi[J]. J Nat Prod, 2012, 75:752-758.
[97] Wu YH, Tseng CK, Wu HC, et al. Avocado (Persea americana) fruit extract (2R,4R)-1,2,4-trihydroxyheptadec-16-yne inhibits dengue virus replication via upregulation of NF-κB-dependent induction of antiviral interferon responses[J]. Sci Rep, 2019, 9:423.
[98] Allard PM, Dau ET, Eydoux C, et al. Alkylated flavanones from the bark of Cryptocarya chartacea as Dengue virus NS5 polymerase inhibitors[J]. J Nat Prod, 2011, 74:2446-2453.
[99] Estoppey D, Lee CM, Janoschke M, et al. The natural product cavinafungin selectively interferes with Zika and Dengue virus replication by inhibition of the host signal peptidase[J]. Cell Rep, 2017, 19:451-460.
[100] Chen M, Shao CL, Meng H, et al. Anti-respiratory syncytial virus prenylated dihydroquinolone derivatives from the gorgonian-derived fungus Aspergillus sp. XS-20090B15[J]. J Nat Prod, 2014, 77:2720-2724.
[101] Cao F, Shao CL, Chen M, et al. Antiviral C25 epimers of 26-acetoxy steroids from the South China Sea Gorgonian Echinogorgia rebekka[J]. J Nat Prod, 2014, 77:1488-1493.
[102] Zhang X, Liu Q, Zhang N, et al. Discovery and evolution of aloperine derivatives as novel anti-filovirus agents through targeting entry stage[J]. Eur J Med Chem, 2018, 149:45-55.
[103] Fois B, Bianco G, Sonar VP, et al. Phenylpropenoids from Bupleurum fruticosum as anti-human rhinovirus species a selective capsid binders[J]. J Nat Prod, 2017, 80:2799-2806.
[104] Pirrung MC, Pansare SV, Sarma KD, et al. Combinatorial optimization of isatin-β-thiosemicarbazones as anti-poxvirus agents[J]. J Med Chem, 2005, 48:3045-3450.
相关文献:
1.陈秀秀, 罗荣华, 郑昌博, 姚债文, 唐秋菊, 熊思东, 郑永唐.富马酸替诺福韦二吡呋酯体外抗寨卡病毒活性研究[J]. 药学学报, 2019,54(9): 1582-1587
2.张春涛, 罗荣华, 陈欢, 刘光明, 常俊标, 杨柳萌, 郑永唐.阿兹夫定体外抗登革病毒活性研究[J]. 药学学报, 2018,53(6): 944-949
3.王萍, 张高红, 向思颖, 杨柳萌, 唐成润, 马晓东, 郑永唐.二甲苯酮类非核苷类逆转录酶抑制剂的体外抗HIV-1活性[J]. 药学学报, 2016,51(11): 1704-1710
4.董 飚 马 涛 章 天 周春梅 刘 刚 王 琳 陶佩珍 张兴权.吡喃香豆素衍生物对HIV-1的抑制作用及其构效关系[J]. 药学学报, 2011,46(1): 35-38
5.高荣梅 李兴琼 何维英 蒋建东 李玉环.利巴韦林注射液体内外抗流感病毒作用研究[J]. 药学学报, 2010,45(3): 403-407
6.李寒冰 鄢 丹 王伽伯 王京燕 贝祝春 魏 丽 肖小河.基于神经氨酸酶活性检测的板蓝根品质的生物评价[J]. 药学学报, 2009,44(2): 162-166
7.刘晓辉;王琳;贯宝各;孔漫;张兴权;陶佩珍;陈鸿珊.9-(2-膦酰甲氧乙基)腺嘌呤及其位置异构体3-(2-膦酰甲氧乙基)腺嘌呤的合成和抗病毒活性研究[J]. 药学学报, 1996,31(2): 112-117
8.童平;侯新朴;邵森;张颖妹;张晨晖.无环鸟苷亲脂性前体药物脂质体的制备及体外抗病毒活性(英文)[J]. 药学学报, 1992,27(1): 15-21
9.蒋湘君;周立;金洁;陶佩珍.抗病毒药物4-取代吡咯[2,3-d]嘧啶开环核苷衍生物的合成[J]. 药学学报, 1989,24(7): 496-501