药学学报, 2020, 55(4): 744-753
引用本文:
陶昱岑, 郝霞, 刘新泳, 展鹏. 抗肠病毒71型药物化学新进展[J]. 药学学报, 2020, 55(4): 744-753.
TAO Yu-cen, HAO Xia, LIU Xin-yong, ZHAN Peng. New advances in the discovery of anti-enterovirus-71 agents[J]. Acta Pharmaceutica Sinica, 2020, 55(4): 744-753.

抗肠病毒71型药物化学新进展
陶昱岑, 郝霞, 刘新泳, 展鹏
山东大学药学院药物化学研究所, 化学生物学教育部重点实验室, 山东 济南 250012
摘要:
近年来肠病毒感染呈现频繁流行的态势并发展为重要的公共健康问题。自1997年以来,肠病毒71型(enterovirus71,EV71)感染导致的手足口病在全球持续暴发,尤其以亚太地区为重灾区,手足口病已经成为我国儿童常见的感染疾病。目前尚无有效治疗EV71感染的药物上市。本综述精选国内外近年来EV71抑制剂研究的实例,从药物化学视角总结了抗EV71药物研究进展,为研发新型抗EV71药物提供重要指导。
关键词:    肠病毒71型      生长周期      抑制剂      复制周期      药物设计     
New advances in the discovery of anti-enterovirus-71 agents
TAO Yu-cen, HAO Xia, LIU Xin-yong, ZHAN Peng
Department of Medicinal Chemistry, Key Laboratory of Chemical Biology(Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
Abstract:
In recent years, enterovirus infection has become a frequent epidemic and developed into an important public health problem. For example, hand-foot-mouth disease has become a common infection among children in China. Hand-foot-mouth disease (HFMD) has been spreading globally since 1997, especially in the Asia-Pacific region. Enterovirus 71 (EV71) is one of the main pathogens causing HFMD. And now there is no drug available to treat EV71 infection. This review summarizes the research progress of anti-enterovirus-71 drugs from the perspective of medicinal chemistry.
Key words:    enterovirus71    life cycle    inhibitor    replication cycle    drug design   
收稿日期: 2019-12-03
DOI: 10.16438/j.0513-4870.2019-0972
基金项目: 国家自然科学基金重点国际合作研究项目(81420108027);山东省重大科技创新工程(2019JZZY021011,2017CXGC1401).
通讯作者: 展鹏,Tel:86-531-88380270,E-mail:zhanpeng1982@sdu.edu.cn;刘新泳,E-mail:xinyongl@sdu.edu.cn
Email: zhanpeng1982@sdu.edu.cn;xinyongl@sdu.edu.cn
相关功能
PDF(812KB) Free
打印本文
0
作者相关文章
陶昱岑  在本刊中的所有文章
郝霞  在本刊中的所有文章
刘新泳  在本刊中的所有文章
展鹏  在本刊中的所有文章

参考文献:
[1] Oberste MS, Peñaranda S, Maher K. Complete genome sequences of all members of the species human enterovirus A[J]. J Gen Virol, 2004, 85:1597-1607.
[2] Sin J, Mangale V, Thienphrapa W, et al. Recent progress in understanding coxsackievirus replication, dissemination, and pathogenesis[J]. Virology, 2015, 484:288-304.
[3] McMinn PC. An overview of the evolution of enterovirus 71 and its clinical and public health significance[J]. FEMS Microbiol Rev, 2002, 26:91-107.
[4] Zhang Y, Simpson AA, Ledford RM, et al. Structural and virological studies of the stages of virus replication that are affected by antirhinovirus compounds[J]. J Virol, 2004, 78:11061-11069.
[5] Tan CW, Lai JK, Sam IC, et al. Recent developments in antiviral agents against enterovirus 71 infection[J]. J Biomed Sci, 2014, 21:14.
[6] Buchta D, Füzik T, Hrebík D, et al. Enterovirus particles expel capsid pentamers to enable genome release[J]. Nat Commun, 2019, 10:1138.
[7] Wu KX, Ng MM, Chu JJ. Developments towards antiviral therapies against enterovirus 71[J]. Drug Discov Today, 2010, 15:1041-1051.
[8] Han L, Li K, Jin C, et al. Human enterovirus 71 protein interaction network prompts antiviral drug repositioning[J]. Sci Rep, 2017, 7:43143.
[9] Diana GD, McKinlay MA, Otto MJ.[[(4,5-Dihydro-oxazolyl 2-)phenoxy]alkyl]isoxazoles inhibitors of picornavirus uncoating[J]. J Med Chem, 1985, 28:1906-1910.
[10] Bailey TR, Diana GD, Kowalczyk PJ, et al. Antirhinoviral activity of heterocyclic analogs of Win 54954[J]. J Med Chem, 1992, 35:4628-4633.
[11] Shia KS, Li WT, Chang CM, et al. Design, synthesis and structure-activity relationship of pyridyl imidazolidinones:a novel class of potent and selective human enterovirus 71 inhibitors[J]. J Med Chem, 2002, 45:1644-1655.
[12] Li P, Yu J, Hao F, et al. Discovery of potent EV71 capsid inhibitors for treatment of HFMD[J]. ACS Med Chem Lett, 2017, 8:841-846.
[13] Arita M, Wakita T, Shimizu H. Characterization of pharmacologically active compounds that inhibit poliovirus and enterovirus 71 infectivity[J]. J Gen Virol, 2008, 89:2518-2530.
[14] Arita M, Takebe Y, Wakita T, et al. A bifunctional anti-enterovirus compound that inhibits replication and the early stage of enterovirus 71 infection[J]. J Gen Virol, 2010, 91:2734-2744.
[15] Baggen J, Thibaut HJ, Strating JRPM, et al. The life cycle of non-polio enteroviruses and how to target it[J]. Nat Rev Microbiol, 2018, 16:368-381.
[16] Nishimura Y, Shimojima M, Tano Y, et al. Human P-selectin glycoprotein ligand-1 is a functional receptor for enterovirus 71[J]. Nat Med, 2009, 15:794-797.
[17] Yang B, Chuang H, Yang KD. Sialylated glycans as receptor and inhibitor of enterovirus 71 infection to DLD-1 intestinal cells[J]. Virol J, 2009, 6:141.
[18] Lin YW, Wang SW, Tung YY, et al. Enterovirus 71 infection of human dendritic cells[J]. Exp Biol Med, 2009, 234:1166-1173.
[19] Shang L, Xu M, Yin Z. Antiviral drug discovery for the treatment of enterovirus 71 infections[J]. Antiviral Res, 2013, 97:183-194.
[20] Meragelman TL, Tucker KD, McCloud TG, et al. Antifungal flavonoids from Hildegardia barteri[J]. J Nat Prod, 2005, 68:1790-1792.
[21] Friedman M. Overview of antibacterial, antitoxin, antiviral, and antifungal activities of tea flavonoids and teas[J]. Mol Nutr Food Res, 2007, 51:116-134.
[22] Min N, Leong PT, Lee RCH, et al. A flavonoid compound library screen revealed potent antiviral activity of plant-derived flavonoids on human enterovirus A71 replication[J]. Antiviral Res, 2018, 150:60-68.
[23] Wang L, Wang J, Wang L, et al. Anti-enterovirus 71 agents of natural products[J]. Molecules, 2015, 20:16320-16333.
[24] Wang HQ, Meng S, Li ZR, et al. The antiviral effect of 7-hydroxyisoflavone against Enterovirus 71 in vitro[J]. J Asian Nat Prod Res, 2013, 15:382-389.
[25] Roberts BL, Severance ZC, Bensen RC, et al. Transient compound treatment induces a multigenerational reduction of oxysterol-binding protein (OSBP) levels and prophylactic antiviral activity[J]. ACS Chem Biol, 2019, 14:276-287.
[26] Albulescu L, Strating JR, Thibaut HJ, et al. Broad-range inhibition of enterovirus replication by OSW-1, a natural compound targeting OSBP[J]. Antiviral Res, 2015, 117:110-114.
[27] Rodriguez PL, Carrasco L. Poliovirus protein 2C has ATPase and GTPase activities[J]. J Biol Chem, 1993, 268:8105-8110.
[28] Pfister T, Wimmer E. Characterization of the nucleoside triphosphatase activity of poliovirus protein 2C reveals a mechanism by which guanidine inhibits poliovirus replication[J]. J Biol Chem, 1999, 274:6992-7001.
[29] Klein M, Eggers HJ, Nelsen-Salz B. Echovirus 9 strain barty non-structural protein 2C has NTPase activity[J]. Virus Res, 1999, 65:155-160.
[30] Xia H, Wang P, Wang GC, et al. Human enterovirus nonstructural protein 2CATPase functions as both an RNA helicase and ATP-independent RNA chaperone[J]. PLoS Pathog, 2015, 11:e1005067.
[31] Xing Y, Zuo J, Krogstad P, et al. Synthesis and structure-activity relationship (SAR) studies of novel pyrazolopyridine derivatives as inhibitors of enterovirus replication[J]. J Med Chem, 2018, 61:1688-1703.
[32] Ulferts R, de Boer SM, van der Linden L, et al. Screening of a library of FDA-approved drugs identifies several enterovirus replication inhibitors that target viral protein 2C[J]. Antimicrob Agents Chemother, 2016, 60:2627-2638.
[33] Bauer L, Manganaro R, Zonsics B, et al. Fluoxetine inhibits enterovirus replication by targeting the viral 2C protein in a stereospecific manner[J]. ACS Infect Dis, 2019, 5:1609-1623.
[34] Bedard KM, Semler BL. Regulation of picornavirus gene expression[J]. Microbes Infect, 2004, 6:702-713.
[35] Falah N, Montserret R, Lelogeais V, et al. Blocking human enterovirus 71 replication by targeting viral 2A protease[J]. J Antimicrob Chemother, 2012, 67:2865-2869.
[36] Patick AK, Brothers MA, Maldonado F, et al. In vitro antiviral activity and single-dose pharmacokinetics in humans of a novel, orally bioavailable inhibitor of human rhinovirus 3C protease[J]. Antimicrob Agents Chemother, 2005, 49:2267-2275.
[37] Wolber G, Langer T. LigandScout:3-D pharmacophores derived from protein-bound ligands and their use as virtual screening filters[J]. J Chem Inf Model, 2005, 45:160-169.
[38] Schulz R, Atef A, Becker D, et al. Phenylthiomethyl ketone-based fragments show selective and irreversible inhibition of enteroviral 3C proteases[J]. J Med Chem, 2018, 61:1218-1230.
[39] Patick AK. Rhinovirus chemotherapy[J]. Antiviral Res, 2006, 71:391-396.
[40] Ma GH, Ye Y, Zhang D, et al. Identification and biochemical characterization of DC07090 as a novel potent small molecule inhibitor against human enterovirus 713C protease by structure-based virtual screening[J]. Eur J Med Chem, 2016, 124:981-991.
[41] Ma Y, Shang C, Yang P, et al. 4-Iminooxazolidin-2-one as abioisostere of the cyanohydrin moiety:inhibitors of enterovirus 713C protease[J]. J Med Chem, 2018, 61:10333-10339.
[42] Ma Y, Li L, He S, et al. Application of dually activated Michael acceptor to the rational design of reversible covalent inhibitor for enterovirus 713C protease[J]. J Med Chem, 2019, 62:6146-6162.
[43] Lin YJ, Lai CC, Lai CH, et al. Inhibition of enterovirus 71 infections and viral IRES activity by Fructus gardeniae and geniposide[J]. Eur J Med Chem, 2013, 62:206-213.
[44] van Kuppeveld FJ, Hoenderop JG, Smeets RL, et al. Coxsackievirus protein 2B modifies endoplasmic reticulum membrane and plasma membrane permeability and facilitates virus release[J]. EMBO J, 1997, 16:3519-3532.
[45] Xie S, Wang K, Yu W, et al. DIDS blocks a chloride-dependent current that is mediated by the 2B protein of enterovirus 71[J]. Cell Res, 2011, 21:1271-1275.
[46] Chou AH, Liu CC, Chang JY, et al. Formalin-inactivated EV71 vaccine candidate induced cross-neutralizing antibody against subgenotypes B1, B4, B5 and C4A in adult volunteers[J]. PLoS One, 2013, 8:e79783.
[47] Lin YC, Wu CN, Shih SR, et al. Characterization of a Vero cell-adapted virulent strain of enterovirus 71 suitable for use as a vaccine candidate[J]. Vaccine, 2002, 20:2485-2493.
[48] Lin YL, Yu CI, Hu YC, et al. Enterovirus type 71 neutralizing antibodies in the serum of macaque monkeys immunized with EV71 virus-like particles[J]. Vaccine, 2012, 30:1305-1312.
[49] Zhou SL, Ying XL, Han X, et al. Characterization of the enterovirus 71 VP1 protein as a vaccine candidate[J]. J Med Virol, 2015, 87:256-262.
[50] Liang Z, Wang J. EV71 vaccine, an invaluable gift for children[J]. Clin Transl Immunol, 2014, 3:e28.
[51] Yi EJ, Shin YJ, Kim JH, et al. Enterovirus 71 infection and vaccines[J]. Clin Exp Vaccine Res, 2017, 6:4-14.
[52] Chong P, Hsieh SY, Liu CC, et al. Production of EV71 vaccine candidates[J]. Hum Vaccines Immunother, 2012, 8:1775-1783.
[53] Chou AH, Liu CC, Chang JY, et al. Immunological evaluation and comparison of different EV71 vaccine candidates[J]. Clin Dev Immunol, 2012, 2012:831282.
[54] Wu CY, Lin YW, Kuo CH, et al. Inactivated enterovirus 71 vaccine produced by 200-L scale serum-free microcarrier bioreactor system provides cross-protective efficacy in human SCARB2 transgenic mouse[J]. PLoS One, 2015, 10:e0136420.
[55] Hwa SH, Lee YA, Brewoo JN, et al. Preclinical evaluation of the immunogenicity and safety of an inactivated enterovirus 71 candidate vaccine[J]. PLoS Negl Trop Dis, 2013, 7:e2538.
相关文献:
1.李敬, 姜向毅, 徐淑静, 崔清华, 杜瑞坤, 康东伟, 展鹏, 荣立军, 刘新泳.冠状病毒抑制剂研究的药物化学策略[J]. 药学学报, 2020,55(4): 537-553
2.魏粉菊, 马悦, 俞霁, 贾海永, 刘新泳, 展鹏.基于新靶标的HBV抑制剂研究进展(2):RNase H及其他靶标[J]. 药学学报, 2020,55(4): 566-574
3.李敬, 刘新泳, 展鹏.人巨细胞病毒抑制剂研究进展[J]. 药学学报, 2020,55(4): 585-596
4.修思雨, 张健, 鞠翰, 贾瑞芳, 黄兵, 展鹏, 刘新泳.抗流感病毒药物靶标及其小分子抑制剂的研究进展[J]. 药学学报, 2020,55(4): 611-626
5.宋淑, 高萍, 展鹏, 刘新泳.丙型肝炎病毒抑制剂研究进展[J]. 药学学报, 2020,55(4): 652-668
6.孙彦莹, 左晓芳, 展鹏, 刘新泳.抗腺病毒药物化学研究新进展[J]. 药学学报, 2020,55(4): 720-733
7.张涛, 周忠霞, 展鹏, 刘新泳.抗痘病毒药物化学研究新进展[J]. 药学学报, 2020,55(4): 734-743
8.梁瑞鹏, 赵彤, 展鹏, 刘新泳.西尼罗病毒抑制剂研究进展[J]. 药学学报, 2020,55(4): 763-772
9.周忠霞, 孙林, 康东伟, 陈子慧, 唐苗苗, 李思雨, 展鹏, 刘新泳.具有新作用机制的HIV-1逆转录酶抑制剂研究进展[J]. 药学学报, 2018,53(5): 691-700
10.霍志鹏, 左晓芳, 康东伟, 展鹏, 刘新泳.抗艾滋病药物新靶标及其小分子抑制剂的研究进展[J]. 药学学报, 2018,53(3): 356-374
11.贾海永, 俞霁, 刘昕浩, 张健, 展鹏, 刘新泳.HIV-1核壳体蛋白NCp7抑制剂研究新进展[J]. 药学学报, 2017,52(11): 1652-1659
12.关鑫磊, 姜凤超, 王悦, 吴鹏飞, 王芳, 陈建国.基于药效团模型的乙酰胆碱酯酶、聚腺苷二磷酸核糖聚合酶-1双靶点分子设计研究[J]. 药学学报, 2014,49(6): 819-823
13.刘 鸿, 展 鹏, 刘新泳.HIV-1逆转录酶和整合酶双靶点抑制剂研究进展[J]. 药学学报, 2013,48(4): 466-476
14.马宇衡,徐波,崔景荣,杨振军,张亮仁,张礼和.三肽四氮唑类20S蛋白酶体抑制剂的设计、合成与活性研究[J]. 药学学报, 2012,47(4): 472-478
15.王 柳, 展 鹏, 刘新泳.结构优化策略在HIV非核苷类逆转录酶抑制剂设计中的应用[J]. 药学学报, 2012,47(11): 1409-1422
16.高丽梅 张胜华 易 红 蒋建东 宋丹青.苯甲酰脲类抗肿瘤β微管蛋白抑制剂药效团模型的构建与应用[J]. 药学学报, 2010,45(4): 462-466
17.汤湧;张大永;吴晓明.作用于Bcl-2家族抗凋亡亚族蛋白的小分子抑制剂的研究进展[J]. 药学学报, 2008,43(7): 669-677
18.祝勇;童心玥;赵玥;陈卉;姜凤超.乙酰胆碱酯酶抑制剂药效团模型的构建[J]. 药学学报, 2008,43(3): 267-276
19.邓小强;向明礼;贾若;杨胜勇.选择性的激酶ATP竞争性抑制剂设计研究进展[J]. 药学学报, 2007,42(12): 1232-1236
20.张文婷;鄢浩;姜凤超.聚腺苷二磷酸核糖聚合酶-1抑制剂药效团模型的建立[J]. 药学学报, 2007,42(3): 279-285