药学学报, 2020, 55(4): 754-762
引用本文:
姜向毅, 李敬, 魏晓颖, 展鹏, 刘新泳. 基孔肯雅病毒抑制剂研究进展[J]. 药学学报, 2020, 55(4): 754-762.
JIANG Xiang-yi, LI jing, WEI Xiao-ying, ZHAN Peng, LIU Xin-yong. Advances in Chikungunya virus inhibitors[J]. Acta Pharmaceutica Sinica, 2020, 55(4): 754-762.

基孔肯雅病毒抑制剂研究进展
姜向毅, 李敬, 魏晓颖, 展鹏, 刘新泳
山东大学药学院药物化学研究所, 化学生物学教育部重点实验室, 山东 济南 250012
摘要:
基孔肯雅热是由基孔肯雅病毒引起的在全球范围内广泛传播的虫媒传染病。目前尚无疫苗或抗病毒药物可用于预防或治疗基孔肯雅病毒感染。本文综述了最近出现的以及经典的基孔肯雅病毒抑制剂,并且概述了发现这些小分子化合物的药物化学策略。
关键词:    基孔肯雅热      基孔肯雅病毒      抑制剂      抗病毒药物      药物化学策略     
Advances in Chikungunya virus inhibitors
JIANG Xiang-yi, LI jing, WEI Xiao-ying, ZHAN Peng, LIU Xin-yong
Department of Medicinal Chemistry, Key Laboratory of Chemical Biology(Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
Abstract:
Chikungunya fever (CHIKF) is an arthropod-borne infection disease caused by Chikungunya virus (CHIKV), which represents a serious health problem worldwide. There is no antiviral drugs treatment for CHIKV infections, neither is there an effective vaccine for prevention of the disease. Herein, we reviewed the recent reported and classical inhibitors of CHIKV, and summarized the medicinal chemistry strategies for discovering CHIKV inhibitors.
Key words:    Chikungunya fever    Chikungunya virus    inhibitor    antiviral drug    medicinal chemistry strategy   
收稿日期: 2019-12-09
DOI: 10.16438/j.0513-4870.2019-1002
基金项目: 国家自然科学基金资助项目(81420108027,81573347);山东省重点研发计划(2017CXGC1401,2019JZZY021011).
通讯作者: 展鹏,Tel:86-531-88380270,E-mail:zhanpeng1982@sdu.edu.cn;刘新泳,E-mail:xinyongl@sdu.edu.cn
Email: zhanpeng1982@sdu.edu.cn;xinyongl@sdu.edu.cn
相关功能
PDF(694KB) Free
打印本文
0
作者相关文章
姜向毅  在本刊中的所有文章
李敬  在本刊中的所有文章
魏晓颖  在本刊中的所有文章
展鹏  在本刊中的所有文章
刘新泳  在本刊中的所有文章

参考文献:
[1] Deller JJ Jr, Russell PK. An analysis of fevers of unknown origin in American soldiers in Vietnam[J]. Ann Intern Med, 1967, 66:1129-1143.
[2] McGill PE. Viral infections:alpha-viral arthropathy[J]. Baillieres Clin Rheumatol, 1995, 9:145-150.
[3] Ligon BL. Reemergence of an unusual disease:the Chikungunya epidemic[J]. Semin Pediatr Infect Dis, 2006, 17:99-104.
[4] Robinson MC. An epidemic of virus disease in Southern Province, Tanganyika Territory, in 1952-53. I. Clinical features[J]. Trans R Soc Trop Med Hyg, 1955, 49:28-32.
[5] Lo Presti A, Cella E, Angeletti S, et al. Molecular epidemiology, evolution and phylogeny of Chikungunya virus:an updating review[J]. Infect Genet Evol, 2016, 41:270-278.
[6] Mendoza EJ, Robinson A, Dimitrova K, et al. Combining anti-IgM and IgG immunoassays for comprehensive Chikungunya virus diagnostic testing[J]. Zoonoses Public Health, 2019, 66:909-917.
[7] Schwartz O, Albert ML. Biology and pathogenesis of Chikungunya virus[J]. Nat Rev Microbiol, 2010, 8:491-500.
[8] Weaver SC, Forrester NL. Chikungunya:evolutionary history and recent epidemic spread[J]. Antiviral Res, 2015, 120:32-39.
[9] Abdelnabi R, Amrun SN, Ng LFP, et al. Protein kinases C as potential host targets for the inhibition of Chikungunya virus replication[J]. Antiviral Res, 2017, 139:79-87.
[10] Lo Presti A, Lai A, Cella E, et al. Chikungunya virus, epidemiology, clinics and phylogenesis:a review[J]. Asian Pac J Trop Med, 2014, 7:925-932.
[11] Rashad AA, Mahalingam S, Keller PA. Chikungunya virus:emerging targets and new opportunities for medicinal chemistry[J]. J Med Chem, 2014, 57:1147-1166.
[12] Higashi N, Matsumoto A, Tabata K, et al. Electron microscope study of development of Chikungunya virus in green monkey kidney stable (VERO) cells[J]. Virology, 1967, 33:55-69.
[13] Simizu B, Yamamoto K, Hashimoto K, et al. Structural proteins of Chikungunya virus[J]. J Virol, 1984, 51:254-258.
[14] Powers AM, Brault AC, Shirako Y, et al. Evolutionary relationships and systematics of the alphaviruses[J]. J Virol, 2001, 75:10118-10131.
[15] BalaMurugan S, Sathishkumar R. Chikungunya infection:a potential re-emerging global threat[J]. Asian Pac J Trop Med, 2016, 9:933-937.
[16] Enserink M. Infectious diseases-Chikungunya:no longer a Third World disease[J]. Science, 2007, 318:1860-1861.
[17] Seyedi SS, Shukri M, Hassandarvish P, et al. Corrigendum:computational approach towards exploring potential anti-Chikungunya activity of selected flavonoids[J]. Sci Rep, 2016, 6:26368.
[18] Jain J, Dubey SK, Shrinet J, et al. Dengue Chikungunya co-infection:a live-in relationship?[J]. Biochem Biophys Res Commun, 2017, 492:608-616.
[19] Singh SK, Unni SK. Chikungunya virus:host pathogen interaction[J]. Rev Med Virol, 2011, 21:78-88.
[20] Russo AT, Malmstrom RD, White MA, et al. Structural basis for substrate specificity of alphavirus nsP2 proteases[J]. J Mol Graph Model, 2010, 29:46-53.
[21] Bhakat S, Karubiu W, Jayaprakash V, et al. A perspective on targeting non-structural proteins to combat neglected tropical diseases:Dengue, West Nile and Chikungunya viruses[J]. Eur J Med Chem, 2014, 87:677-702.
[22] Sourisseau M, Schilte C, Casartelli N, et al. Characterization of reemerging Chikungunya virus[J]. PLoS Pathog, 2007, 3:e89.
[23] Mukhopadhyay S, Zhang W, Gabler S, et al. Mapping the structure and function of the E1 and E2 glycoproteins in alphaviruses[J]. Structure, 2006, 14:63-73.
[24] Solignat M, Gay B, Higgs S, et al. Replication cycle of Chikungunya:a re-emerging arbovirus[J]. Virology, 2009, 393:183-197.
[25] Grakoui A, Levis R, Raju R, et al. A cis-acting mutation in the sindbis virus junction region which affects subgenomic RNA-synthesis[J]. J Virol, 1989, 63:5216-5227.
[26] Gould EA, Coutard B, Malet H, et al. Understanding the alphaviruses:recent research on important emerging pathogens and progress towards their control[J]. Antiviral Res, 2010, 87:111-124.
[27] Khan AH, Morita K, Parquet MDC, et al. Complete nucleotide sequence of Chikungunya virus and evidence for an internal polyadenylation site[J]. J Gen Virol, 2002, 83:3075-3084.
[28] Schilte C, Couderc T, Chretien F, et al. Type I IFN controls Chikungunya virus via its action on nonhematopoietic cells[J]. J Exp Med, 2010, 207:429-442.
[29] Akahata W, Yang ZY, Andersen H, et al. A virus-like particle vaccine for epidemic Chikungunya virus protects nonhuman primates against infection[J]. Nat Med, 2010, 16:334-338.
[30] Mallilankaraman K, Shedlock DJ, Bao H, et al. A DNA vaccine against Chikungunya virus is protective in mice and induces neutralizing antibodies in mice and nonhuman primates[J]. PLoS Neglect Trop D, 2011, 5:e928.
[31] Metz SW, Geertsema C, Martina BE, et al. Functional processing and secretion of Chikungunya virus E1 and E2 glycoproteins in insect cells[J]. Virol J, 2011, 8:353.
[32] Wang D, Suhrbier A, Penn-Nicholson A, et al. A complex adenovirus vaccine against Chikungunya virus provides complete protection against viraemia and arthritis[J]. Vaccine, 2011, 29:2803-2809.
[33] Plante K, Wang E, Partidos CD, et al. Novel Chikungunya vaccine candidate with an IRES-based attenuation and host range alteration mechanism[J]. PLoS Pathog, 2011, 7:e1002142.
[34] Roy CJ, Adams AP, Wang E, et al. Chikungunya vaccine candidate is highly attenuated and protects nonhuman primates against telemetrically monitored disease following a single dose[J]. J Infect Dis, 2014, 209:1891-1899.
[35] Kaur P, Chu JJ. Chikungunya virus:an update on antiviral development and challenges[J]. Drug Discov Today, 2013, 18:969-983.
[36] Khan M, Santhosh SR, Tiwari M, et al. Assessment of in vitro prophylactic and therapeutic efficacy of chloroquine against Chikungunya virus in Vero cells[J]. J Med Virol, 2010, 82:817-824.
[37] Abdelnabi R, Neyts J, Delang L. Towards antivirals against Chikungunya virus[J]. Antiviral Res, 2015, 121:59-68.
[38] Di Mola A, Peduto A, La Gatta A, et al. Structure-activity relationship study of arbidol derivatives as inhibitors of Chikungunya virus replication[J]. Bioorg Med Chem, 2014, 22:6014-6025.
[39] Delogu I, Pastorino B, Baronti C, et al. In vitro antiviral activity of arbidol against Chikungunya virus and characteristics of a selected resistant mutant[J]. Antiviral Res, 2011, 90:99-107.
[40] Blaising J, Polyak SJ, Pecheur EI. Arbidol as a broad-spectrum antiviral:an update[J]. Antiviral Res, 2014, 107:84-94.
[41] Scuotto M, Abdelnabi R, Collarile S, et al. Discovery of novel multi-target indole-based derivatives as potent and selective inhibitors of Chikungunya virus replication[J]. Bioorg Med Chem, 2017, 25:327-337.
[42] Strauss JH, Strauss EG. The alphaviruses-gene-expression, replication, and evolution[J]. Microbiol Rev, 1994, 58:806.
[43] Hyde JL, Gardner CL, Kimura T, et al. A viral RNA structural element alters host recognition of nonself RNA[J]. Science, 2014, 343:783-787.
[44] Feibelman KM, Fuller BP, Li L, et al. Identification of small molecule inhibitors of the Chikungunya virus nsP1 RNA capping enzyme[J]. Antiviral Res, 2018, 154:124-131.
[45] Gigante A, Canela MD, Delang L, et al. Identification of[1,2,3] triazolo[4,5-d]pyrimidin-7(6H)-ones as novel inhibitors of Chikungunya virus replication[J]. J Med Chem, 2014, 57:4000-4008.
[46] Delang L, Li C, Tas A, et al. The viral capping enzyme nsP1:a novel target for the inhibition of Chikungunya virus infection[J]. Sci Rep, 2016, 6:31819.
[47] Gigante A, Gomez-SanJuan A, Delang L, et al. Antiviral activity of[1,2,3] triazolo[4,5-d]pyrimidin-7(6H)-ones against Chikungunya virus targeting the viral capping nsP1[J]. Antiviral Res, 2017, 144:216-222.
[48] Bullard-Feibelman KM, Fuller BP, Geiss BJ. A sensitive and robust high-throughput screening assay for inhibitors of the Chikungunya virus nsP1 capping enzyme[J]. PLoS One, 2016, 11:e0158923.
[49] Feibelman KM, Fuller BP, Li LF, et al. Identification of small molecule inhibitors of the Chikungunya virus nsP1 RNA capping enzyme[J]. Antiviral Res, 2018, 154:124-131.
[50] Bao HH, Ramanathan AA, Kawalakar O, et al. Nonstructural protein 2(nsP2) of Chikungunya virus (CHIKV) enhances protective immunity mediated by a CHIKV envelope protein expressing DNA vaccine[J]. Viral Immunol, 2013, 26:75-83.
[51] Kumar P, Kumar D, Giri R. Targeting the nsp2 cysteine protease of Chikungunya virus using FDA approved library and selected cysteine protease inhibitors[J]. Pathogens, 2019, 8:E128.
[52] Friesner RA, Murphy RB, Repasky MP, et al. Extra precision glide:docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes[J]. J Med Chem, 2006, 49:6177-6196.
[53] Vanommeslaeghe K, Hatcher E, Acharya C, et al. CHARMM general force field:a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields[J]. J Comput Chem, 2010, 31:671-690.
[54] Hanwell MD, Curtis DE, Lonie DC, et al. Avogadro:an advanced semantic chemical editor, visualization, and analysis platform[J]. J Cheminform, 2012, 4:17.
[55] Saha A, Acharya BN, Priya R, et al. Development of nsP2 protease based cell free high throughput screening assay for evaluation of inhibitors against emerging Chikungunya virus[J]. Sci Rep, 2018, 8:10831.
[56] Perez-Perez MJ, Delang L, Ng LFP, et al. Chikungunya virus drug discovery:still a long way to go?[J]. Expert Opin Drug Discov, 2019, 14:855-866.
[57] Gotte B, Liu L, McInerney GM. The enigmatic alphavirus non-structural protein 3(nsP3) revealing its secrets at last[J]. Viruses-Basel, 2018, 10:105.
[58] Abraham R, Hauer D, McPherson RL, et al. ADP-ribosyl-binding and hydrolase activities of the alphavirus nsP3 macrodomain are critical for initiation of virus replication[J]. Proc Natl Acad Sci U S A, 2018, 115:E10457-E10466.
[59] Seyedi SS, Shukri M, Hassandarvish P, et al. Computational approach towards exploring potential anti-Chikungunya activity of selected flavonoids[J]. Sci Rep, 2016, 6:24027.
[60] Kumar D, Kumari K, Jayaraj A, et al. Development of a theoretical model for the inhibition of nsP3 protease of Chikungunya virus using pyranooxazoles[J]. J Biomol Struct Dyn, 2019. DOI:10.1080/07391102.2019.1650830.
[61] Tardif KD, Waris G, Siddiqui A. Hepatitis C virus, ER stress, and oxidative stress[J]. Trends Microbiol, 2005, 13:159-163.
[62] Wada Y, Orba Y, Sasaki M, et al. Discovery of a novel antiviral agent targeting the nonstructural protein 4(nsP4) of Chikungunya virus[J]. Virology, 2017, 505:102-112.
[63] Salminen A, Wahlberg JM, Lobigs M, et al. Membrane fusion process of Semliki Forest virus. II:Cleavage-dependent reorganization of the spike protein complex controls virus entry[J]. J Cell Biol, 1992, 116:349-357.
[64] Li L, Jose J, Xiang Y, et al. Structural changes of envelope proteins during alphavirus fusion[J]. Nature, 2010, 468:705-708.
[65] Rashad AA, Keller PA. Structure based design towards the identification of novel binding sites and inhibitors for the Chikungunya virus envelope proteins[J]. J Mol Graph Model, 2013, 44:241-252.
[66] Agarwal G, Gupta S, Gabrani R, et al. Virtual screening of inhibitors against envelope glycoprotein of Chikungunya virus:a drug repositioning approach[J]. Bioinformation, 2019, 15:439-447.
[67] Ching KC, Ng LFP, Chai CLL. A compendium of small molecule direct-acting and host-targeting inhibitors as therapies against alphaviruses[J]. J Antimicrob Chemoth, 2017, 72:2973-2989.
[68] Nguyen M, Marcellus RC, Roulston A, et al. Small molecule obatoclax (GX15-070) antagonizes MCL-1 and overcomes MCL-1-mediated resistance to apoptosis[J]. Proc Natl Acad Sci U S A, 2007, 104:19512-19517.
[69] Varghese FS, Rausalu K, Hakanen M, et al. Obatoclax inhibits alphavirus membrane fusion by neutralizing the acidic environment of endocytic compartments[J]. Antimicrob Agents Chemother, 2017, 61:e02227-16.
[70] Varghese FS, Thaa B, Amrun SN, et al. The antiviral alkaloid berberine reduces Chikungunya virus-induced mitogen-activated protein kinase signaling[J]. J Virol, 2016, 90:9743-9757.
[71] Bourjot M, Delang L, Nguyen VH, et al. Prostratin and 12-O-tetradecanoylphorbol 13-acetate are potent and selective inhibitors of Chikungunya virus replication[J]. J Nat Prod, 2012, 75:2183-2187.
[72] Kaur P, Thiruchelvan M, Lee RCH, et al. Inhibition of Chikungunya virus replication by harringtonine, a novel antiviral that suppresses viral protein expression[J]. Antimicrob Agents Chemother, 2013, 57:155-167.
[73] Paeshuyse J, Dallmeier K, Neyts J. Ribavirin for the treatment of chronic hepatitis C virus infection:a review of the proposed mechanisms of action[J]. Curr Opin Virol, 2011, 1:590-598.
[74] Debing Y, Emerson SU, Wang YJ, et al. Ribavirin inhibits in vitrohepatitis E virus replication through depletion of cellular GTP pools and is moderately synergistic with alpha interferon[J]. Antimicrob Agents Chemother, 2014, 58:267-273.
[75] Briolant S, Garin D, Scaramozzino N, et al. In vitro inhibition of Chikungunya and Semliki Forest viruses replication by antiviral compounds:synergistic effect of interferon-alpha and ribavirin combination[J]. Antiviral Res, 2004, 61:111-117.
[76] Rada B, Dragun M. Antiviral action and selectivity of 6-azauridine[J]. Ann N Y Acad Sci, 1977, 284:410-417.
[77] Crutcher WA, Moschella SL. Double-blind controlled crossover high-dose study of azaribine in psoriasis[J]. Br J Dermatol, 1975, 92:199-205.
[78] Furuta Y, Gowen BB, Takahashi K, et al. Favipiravir (T-705), a novel viral RNA polymerase inhibitor[J]. Antiviral Res, 2013, 100:446-454.
[79] Delang L, Segura Guerrero N, Tas A, et al. Mutations in the Chikungunya virus non-structural proteins cause resistance to favipiravir (T-705), a broad-spectrum antiviral[J]. J Antimicrob Chemother, 2014, 69:2770-2784.
[80] Delang L, Abdelnabi R, Neyts J. Favipiravir as a potential countermeasure against neglected and emerging RNA viruses[J]. Antiviral Res, 2018, 153:85-94.
[81] Singh A, Kumar A, Uversky VN, et al. Understanding the interactability of Chikungunya virus proteins via molecular recognition feature analysis[J]. Rsc Adv, 2018, 8:27293-27303.
相关文献:
1.李敬, 姜向毅, 徐淑静, 崔清华, 杜瑞坤, 康东伟, 展鹏, 荣立军, 刘新泳.冠状病毒抑制剂研究的药物化学策略[J]. 药学学报, 2020,55(4): 537-553
2.修思雨, 张健, 鞠翰, 贾瑞芳, 黄兵, 展鹏, 刘新泳.抗流感病毒药物靶标及其小分子抑制剂的研究进展[J]. 药学学报, 2020,55(4): 611-626
3.宋淑, 高萍, 展鹏, 刘新泳.丙型肝炎病毒抑制剂研究进展[J]. 药学学报, 2020,55(4): 652-668