药学学报, 2020, 55(4): 763-772
引用本文:
梁瑞鹏, 赵彤, 展鹏, 刘新泳. 西尼罗病毒抑制剂研究进展[J]. 药学学报, 2020, 55(4): 763-772.
LIANG Rui-peng, ZHAO Tong, ZHAN Peng, LIU Xin-yong. Research progress on the West Nile virus inhibitors[J]. Acta Pharmaceutica Sinica, 2020, 55(4): 763-772.

西尼罗病毒抑制剂研究进展
梁瑞鹏, 赵彤, 展鹏, 刘新泳
山东大学药学院药物化学研究所, 化学生物学教育部重点实验室, 山东 济南 250012
摘要:
西尼罗病毒是一种由库蚊传播的黄病毒。人们对其普遍易感,病毒感染可导致西尼罗热,进而发展为西尼罗病毒性脑炎甚至导致死亡。目前尚无批准的特异性抗西尼罗病毒药物。因此,研发有效的西尼罗病毒抑制剂是目前药物化学研究的热点。本文根据西尼罗病毒的主要靶点,总结了西尼罗病毒抑制剂研究的新进展。
关键词:    西尼罗病毒      西尼罗热      抑制剂      药物靶点      药物设计     
Research progress on the West Nile virus inhibitors
LIANG Rui-peng, ZHAO Tong, ZHAN Peng, LIU Xin-yong
Department of Medicinal Chemistry, Key Laboratory of Chemical Biology(Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
Abstract:
West Nile virus is a flavivirus transmitted by culex mosquitoes. People are generally susceptible to it, West Nile virus infection can cause west Nile fever, which can develop West Nile viral encephalitis and even lead to death. There are currently no approved specific antiviral drugs against West Nile virus. Therefore, seeking effective West Nile virus inhibitors is a hot topic in current community of medicinal chemistry. In this article, based on the main targets of West Nile virus, we summarize the new progress research on West Nile virus inhibitors.
Key words:    West Nile virus    West Nile fever    inhibitor    drug target    drug design   
收稿日期: 2019-12-13
DOI: 10.16438/j.0513-4870.2019-1017
基金项目: 国家自然科学基金项目(81420108027,81573347);山东省重大科技创新工程(2019JZZY021011,2017CXGC1401).
通讯作者: 展鹏,Tel:86-531-88380270,E-mail:zhanpeng1982@sdu.edu.cn;刘新泳,E-mail:xinyongl@sdu.edu.cn
Email: zhanpeng1982@sdu.edu.cn;xinyongl@sdu.edu.cn
相关功能
PDF(763KB) Free
打印本文
0
作者相关文章
梁瑞鹏  在本刊中的所有文章
赵彤  在本刊中的所有文章
展鹏  在本刊中的所有文章
刘新泳  在本刊中的所有文章

参考文献:
[1] Saxena V, Bolling BG, Wang T. West Nile virus[J]. Clin Lab Med, 2017, 37:243-252.
[2] Kramer LD, Li J, Shi PY. West Nile virus[J]. Lancet Neurol, 2007, 6:171-181.
[3] Brinton MA. The molecular biology of West Nile virus:a new invader of the western hemisphere[J]. Annu Rev Microbiol, 2002, 56:371-402.
[4] Suthar MS, Diamond MS, Gale M. West Nile virus infection and immunity[J]. Nat Rev Microbiol, 2013, 11:115-128.
[5] Zou S, Foster GA, Dodd RY, et al. West Nile fever characteristics among viremicpersons identified through blood donor screening[J]. J Infect Dis, 2010, 202:1354-1361.
[6] Petersen LR, Brault AC, Nasci RS. West Nile virus:review of the literature[J]. JAMA, 2013, 310:308-315.
[7] Deng YQ, Dai JX, Ji GH, et al. A broadly flavivirus cross-neutralizing monoclonal antibody that recognizes a novel epitope within the fusion loop of E protein[J]. PLoS One, 2011, 6:e16059.
[8] Kampmann T, Yennamalli R, Campbell P, et al. In silico screening of small molecule libraries using the Dengue virus envelope E protein has identified compounds with antiviral activity against multiple flaviviruses[J]. Antiviral Res, 2009, 84:234-241.
[9] Stoermer MJ, Chappell KJ, Liebscher S, et al. Potent cationic inhibitors of West Nile virus NS2B/NS3 protease with serum stability, cell permeability and antiviral activity[J]. J Med Chem, 2008, 51:5714-5721.
[10] Pinkham AM, Yu Z, Cowan JA. Attenuation of West Nile virus NS2B/NS3 protease by amino terminal copper and nickel binding (ATCUN) peptides[J]. J Med Chem, 2018, 61:980-988.
[11] Knox JE, Ma NL, Yin Z, et al. Peptide inhibitors of West Nile NS3 protease:SAR study of tetrapeptide aldehyde inhibitors[J]. J Med Chem, 2006, 49:6585-6590.
[12] Lim HA, Joy J, Hill J, et al. Novel agmatine and agmatine-like peptidomimetic inhibitors of the West Nile virus NS2B/NS3 serine protease[J]. Eur J Med Chem, 2011, 46:3130-3134.
[13] Lim HA, Ang MJ, Joy J, et al. Novel agmatine dipeptide inhibitors against the West Nile virus NS2B/NS3 protease:a P3 and N-cap optimization study[J]. Eur J Med Chem, 2013, 62:199-205.
[14] Hammamy MZ, Haase C, Hammami M, et al. Development and characterization of new peptidomimetic inhibitors of the West Nile virus NS2B-NS3 protease[J]. ChemMedChem, 2013, 8:231-241.
[15] Nitsche C, Schreier VN, Behnam MA, et al. Thiazolidinone-peptide hybrids as Dengue virus protease inhibitors with antiviral activity in cell culture[J]. J Med Chem, 2013, 56:8389-8403.
[16] Bastos Lima A, Behnam MA, El Sherif Y, et al. Dual inhibitors of the Dengue and West Nile virus NS2B-NS3 proteases:synthesis, biological evaluation and docking studies of novel peptide-hybrids[J]. Bioorg Med Chem, 2015, 23:5748-5755.
[17] Behnam MA, Graf D, Bartenschlager R, et al. Discovery of nanomolar Dengue and West Nile virus protease inhibitors containing a 4-benzyloxyphenylglycine residue[J]. J Med Chem, 2015, 58:9354-9370.
[18] Skoreński M, Milewska A, Pyrć K, et al. Phosphonate inhibitors of West Nile virus NS2B/NS3 protease[J]. J Enzyme Inhib Med Chem, 2019, 34:8-14.
[19] Dražić T, Kopf S, Corridan JF, et al. Peptide-β-lactam inhibitors of Dengue and West Nile virus NS2B-NS3 protease display two distinct binding modes[J]. J Med Chem, 2020, 63:140-156.
[20] Johnston PA, Phillips J, Shun TY, et al. HTS identifies novel and specific uncompetitive inhibitors of the two-component NS2B-NS3 proteinase of West Nile virus[J]. Assay Drug Dev Technol, 2007, 5:737-750.
[21] Sidique S, Shiryaev SA,Ratnikov BI, et al. Structure-activity relationship and improved hydrolytic stability of pyrazole derivatives that are allosteric inhibitors of West Nile virus NS2B-NS3 proteinase[J]. Bioorg Med Chem Lett, 2009, 19:5773-5777.
[22] Ekonomiuk D, Su XC, Ozawa K, et al. Discovery of a non-peptidic inhibitor of West Nile virus NS3 proteaseby high-throughput docking[J]. PLoS Negl Trop Dis, 2009, 3:e356.
[23] Mueller NH, Pattabiraman N, Ansarah-Sobrinho C, et al. Identification and biochemical characterization of small-molecule inhibitors of West Nile virus serine protease by a high-throughput screen[J]. Antimicrob Agents Chem, 2008, 52:3385-3393.
[24] Ezgimen M, Lai H, Mueller NH, et al. Characterization of the 8-hydroxyquinoline scaffold for inhibitors of West Nile virus serine protease[J]. Antiviral Res, 2012, 94:18-24.
[25] Dou D, Viwanathan P, Li Y, et al. Design, synthesis, and in vitro evaluation of potential West Nile virus protease inhibitors based on the 1-oxo-1,2,3,4-tetrahydroisoquinoline and 1-oxo-1,2-dihydroisoquinoline scaffolds[J]. J Comb Chem, 2010, 12:836-843.
[26] Nitsche C, Steuer C, Klein CD. Arylcyanoacrylamides as inhibitors of the Dengue and West Nile virus proteases[J]. Bioorg Med Chem, 2011, 19:7318-7337.
[27] Aravapalli S, Lai H, Teramoto T, et al. Inhibitors of Dengue virus and West Nile virus proteases based on the aminobenzamide scaffold[J]. Bioorg Med Chem, 2012, 20:4140-4148.
[28] Tiew KC, Dou D, Teramoto T, et al. Inhibition of Dengue virus and West Nile virus proteases by click chemistry-derived benz[d]isothiazol-3(2H)-one derivatives[J]. Bioorg Med Chem, 2012, 20:1213-1221.
[29] Lopez-Denman AJ, Russo A, Wagstaff KM, et al. Nucleocytoplasmic shuttling of the West Nile virus RNA-dependent RNA polymerase NS5 is critical to infection[J]. Cell Microbiol, 2018, 20:e12848.
[30] Puig-Basagoiti F, Qing M, Yuan Z, et al. Identification and characterization of inhibitors of West Nile virus[J]. Antiviral Res, 2009, 83:71-79.
[31] Sirivolu VR, Vernekar SKV, Ilina T, et al. Clicking 3'-azidothymidine into novel potent inhibitors of human immunodeficiency virus[J]. J Med Chem, 2013, 56:8765-8780.
[32] Vernekar SK, Qiu L, Zhang J, et al. 5'-Silylated 3'-1,2,3-triazolyl thymidine analogues as inhibitors of West Nile virus and Dengue virus[J]. J Med Chem, 2015, 58:4016-4028.
[33] Setoh YX, Periasamy P, Peng NYG, et al. Helicase domain of West Nile virus NS3 protein plays a role in inhibition of type I interferon signaling[J]. Viruses, 2017, 9:326.
[34] Zhang N, Chen HM, Koch V, et al. Ring-expanded ("fat") nucleoside and nucleotide analogues exhibit potent in vitro activity against Flaviviridae NTPases/helicases, including those of the West Nile virus, hepatitis C virus, and Japanese Encephalitis virus[J]. J Med Chem, 2003, 46:4149-4164.
[35] Ujjinamatada RK, Agasimundin YS, Zhang P, et al. A novel imidazole nucleoside containing a diaminodihydro-S-triazine as a substituent:inhibitory activity against the West Nile virus NTPase/helicase[J]. Nucleosides Nucleotides Nucleic Acids, 2005, 24:1775-1788.
[36] Ujjinamatada RK, Baier A, Borowski P, et al. An analogue of AICAR with dual inhibitory activity against WNV and HCV NTPase/helicase:synthesis and in vitro screening of 4-carbamoyl-5-(4,6-diamino-2,5-dihydro-1,3,5-triazin-2-yl)imidazole-1-beta-D-ribofuranoside[J]. Bioorg Med Chem Lett, 2007, 17:2285-2288.
[37] Borowski P, Lang M, Haag A, et al. Characterization of imidazo[4,5-d]pyridazine nucleosides as modulators of unwinding reaction mediated by West Nile virus nucleoside triphosphatase/helicase:evidence for activity on the level of substrate and/or enzyme[J]. Antimicrob Agents Chemother, 2002, 46:1231-1239.
[38] Borowski P, Deinert J, Schalinski S, et al. Halogenated benzimidazoles and benzotriazoles as inhibitors of the NTPase/helicase activities of hepatitis C and related viruses[J]. Eur J Biochem, 2003, 270:1645-1653.
[39] Goodell JR, Puig-Basagoiti F, Forshey BM, et al. Identification of compounds with anti-West Nile virus activity[J]. J Med Chem, 2006, 49:2127-2137.
[40] Brai A, Martelli F, Riva V, et al. DDX3X helicase inhibitors as a new strategy to fight the West Nile virus infection[J]. J Med Chem, 2019, 62:2333-2347.
[41] Morrey JD, Day CW, Julander JG, et al. Effect of interferon-alpha and interferon-inducers on West Nile virus in mouse and hamster animal models[J]. Antivir Chem Chemother, 2004, 15:101-109.
[42] Song GY, Paul V, Choo H, et al. Enantiomeric synthesis of D-and L-cyclopentenyl nucleosides and their antiviral activity against HIV and West Nile virus[J]. J Med Chem, 2001, 44:3985-3993.
[43] Michaelis M, Kleinschmidt MC, Doerr HW, et al. Minocycline inhibits West Nile virus replication and apoptosis in human neuronal cells[J]. J Antimicrob Chemother, 2007, 60:981-986.
[44] Barklis E, Still A, Sabri MI, et al. Sultam thiourea inhibition of West Nile virus[J]. Antimicrob Agents Chemother, 2007, 51:2642-2645.
[45] Eyer L, Zouharová D, Širmarová J, et al. Antiviral activity of the adenosine analogue BCX4430 against West Nile virus and tick-borne flaviviruses[J]. Antiviral Res, 2017, 142:63-67.
[46] Wu G, Zhao T, Kang D, et al. Overview of recent strategic advances in medicinal chemistry[J]. J Med Chem, 2019, 62:9375-9414.
相关文献:
1.李敬, 姜向毅, 徐淑静, 崔清华, 杜瑞坤, 康东伟, 展鹏, 荣立军, 刘新泳.冠状病毒抑制剂研究的药物化学策略[J]. 药学学报, 2020,55(4): 537-553
2.马悦, 魏粉菊, 俞霁, 贾海永, 刘新泳, 展鹏.基于新靶标的HBV抑制剂研究进展(1):衣壳蛋白抑制剂[J]. 药学学报, 2020,55(4): 554-565
3.魏粉菊, 马悦, 俞霁, 贾海永, 刘新泳, 展鹏.基于新靶标的HBV抑制剂研究进展(2):RNase H及其他靶标[J]. 药学学报, 2020,55(4): 566-574
4.徐淑静, 刘新泳, 展鹏.呼吸道合胞病毒抑制剂研究新进展[J]. 药学学报, 2020,55(4): 597-610
5.修思雨, 张健, 鞠翰, 贾瑞芳, 黄兵, 展鹏, 刘新泳.抗流感病毒药物靶标及其小分子抑制剂的研究进展[J]. 药学学报, 2020,55(4): 611-626
6.宋淑, 高萍, 展鹏, 刘新泳.丙型肝炎病毒抑制剂研究进展[J]. 药学学报, 2020,55(4): 652-668
7.孙彦莹, 左晓芳, 展鹏, 刘新泳.抗腺病毒药物化学研究新进展[J]. 药学学报, 2020,55(4): 720-733
8.张涛, 周忠霞, 展鹏, 刘新泳.抗痘病毒药物化学研究新进展[J]. 药学学报, 2020,55(4): 734-743
9.陶昱岑, 郝霞, 刘新泳, 展鹏.抗肠病毒71型药物化学新进展[J]. 药学学报, 2020,55(4): 744-753
10.周忠霞, 孙林, 康东伟, 陈子慧, 唐苗苗, 李思雨, 展鹏, 刘新泳.具有新作用机制的HIV-1逆转录酶抑制剂研究进展[J]. 药学学报, 2018,53(5): 691-700
11.霍志鹏, 左晓芳, 康东伟, 展鹏, 刘新泳.抗艾滋病药物新靶标及其小分子抑制剂的研究进展[J]. 药学学报, 2018,53(3): 356-374
12.贾海永, 俞霁, 刘昕浩, 张健, 展鹏, 刘新泳.HIV-1核壳体蛋白NCp7抑制剂研究新进展[J]. 药学学报, 2017,52(11): 1652-1659
13.张友文, 张丹, 孙华.次黄嘌呤脱氢酶的基本功能及作为药物靶点的应用[J]. 药学学报, 2014,49(3): 285-292
14.关鑫磊, 姜凤超, 王悦, 吴鹏飞, 王芳, 陈建国.基于药效团模型的乙酰胆碱酯酶、聚腺苷二磷酸核糖聚合酶-1双靶点分子设计研究[J]. 药学学报, 2014,49(6): 819-823
15.刘 鸿, 展 鹏, 刘新泳.HIV-1逆转录酶和整合酶双靶点抑制剂研究进展[J]. 药学学报, 2013,48(4): 466-476
16.马宇衡,徐波,崔景荣,杨振军,张亮仁,张礼和.三肽四氮唑类20S蛋白酶体抑制剂的设计、合成与活性研究[J]. 药学学报, 2012,47(4): 472-478
17.王 柳, 展 鹏, 刘新泳.结构优化策略在HIV非核苷类逆转录酶抑制剂设计中的应用[J]. 药学学报, 2012,47(11): 1409-1422
18.高丽梅 张胜华 易 红 蒋建东 宋丹青.苯甲酰脲类抗肿瘤β微管蛋白抑制剂药效团模型的构建与应用[J]. 药学学报, 2010,45(4): 462-466
19.汤湧;张大永;吴晓明.作用于Bcl-2家族抗凋亡亚族蛋白的小分子抑制剂的研究进展[J]. 药学学报, 2008,43(7): 669-677
20.祝勇;童心玥;赵玥;陈卉;姜凤超.乙酰胆碱酯酶抑制剂药效团模型的构建[J]. 药学学报, 2008,43(3): 267-276
21.邓小强;向明礼;贾若;杨胜勇.选择性的激酶ATP竞争性抑制剂设计研究进展[J]. 药学学报, 2007,42(12): 1232-1236
22.张文婷;鄢浩;姜凤超.聚腺苷二磷酸核糖聚合酶-1抑制剂药效团模型的建立[J]. 药学学报, 2007,42(3): 279-285