药学学报, 2020, 55(5): 781-788
引用本文:
于子茹, 杜冠华. 影响认知功能的药物研发进展[J]. 药学学报, 2020, 55(5): 781-788.
YU Zi-ru, DU Guan-hua. Progress in research and development of cognition related drugs[J]. Acta Pharmaceutica Sinica, 2020, 55(5): 781-788.

影响认知功能的药物研发进展
于子茹, 杜冠华
中国医学科学院、北京协和医学院药物研究所, 北京市药物靶点研究与新药筛选重点实验室, 北京 100050
摘要:
神经系统药物在整个药物研发中处于重要地位,其中调节认知功能的药物更是成为社会发展的迫切需求,但认知类药物临床供应严重不足且研发面临受挫。本文结合认知药理学的研究现状,对两大类认知药物进行简要概述,分别为影响正常认知功能的药物及改善认知功能障碍的药物。目前的新药研发集中在调节神经递质、靶向Aβ和Tau蛋白、神经保护及疏通血管等方面,仍需要新的研究方法及思路。本文将结合临床及在研药物,以阿尔茨海默病为主,提出并分析认知药理学发展的任务和挑战,总结认知药物研发策略,指出认知药理学的发展机遇,以期为广大科研人员提供新思路,共同促进认知药物的研发与发展。
关键词:    认知药理学      认知障碍      促智药      阿尔茨海默病      药物研发     
Progress in research and development of cognition related drugs
YU Zi-ru, DU Guan-hua
Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
Abstract:
Nervous system drugs play an important role in the drug research and development, and the cognition related drug become the urgent needs of social development. However, drugs which can regulate cognitive function are seriously inadequate in clinical supply, and faced frustration in research and development process. In this paper, a brief overview of the two types of cognition related drugs (drugs affecting normal cognitive function and improving cognitive dysfunction) were discussed based on the current research status of cognitive pharmacology. The current research and development of new cognition related drugs focuses on regulating neurotransmitters, targeting Aβ and Tau proteins, neuroprotection and vascularization, and still requires new research methods and ideas. In this article, we summed up the research strategies based on the clinical and development of cognition related drugs, especially for the Alzheimer's disease, then we put forward the task and challenge of cognitive pharmacology development. We aimed at providing new ideas for researchers to promote the development of cognitive drugs.
Key words:    cognitive pharmacology    cognitive impairment    cognition enhancer    Alzheimer's disease    drug development   
收稿日期: 2019-08-30
DOI: 10.16438/j.0513-4870.2019-0700
基金项目: 国家自然科学基金资助项目(81603100);药物创新重大项目(2018ZX09711001-003-005);中国医学科学院医学与健康科技创新工程(2017-I2M-1-010).
通讯作者: 杜冠华,Tel:86-10-63165184,E-mail:dugh@imm.ac.cn
Email: dugh@imm.ac.cn
相关功能
PDF(744KB) Free
打印本文
0
作者相关文章
于子茹  在本刊中的所有文章
杜冠华  在本刊中的所有文章

参考文献:
[1] Zhang JT, Liu SL, Jiang XY, et al. Cognitive pharmacology, history and current situation[J]. J Neuropharmacol (神经药理学报), 2015, 5:1-9.
[2] Bittner N, Jockwitz C,Mühleisen, et al. Combining lifestyle risks to disentangle brain structure and functional connectivity differences in older adults[J]. Nat Commun, 2019, 10:621-634.
[3] Abete P, Della-Morte D, Gargiulo G, et al. Cognitive impairment and cardiovascular diseases in the elderly. A heart-brain continuum hypothesis[J]. Ageing Res Rev, 201418:41-52.
[4] Manzano Palomo MS, Anaya Caravaca B, Balsa Bretón MA, et al. Mild cognitive impairment with a high risk of progression to Alzheimer's disease dementia (MCI-HR-AD):effect of Souvenaid® treatment on cognition and 18F-FDG PET scans[J]. J Alzheimers Dis Rep, 2019, 3:95-102.
[5] Jones AJ, Kuijer RG, Livingston L, et al. Caregiver burden is increased in Parkinson's disease with mild cognitive impairment (PD-MCI)[J]. Transl Neurodegener, 2017, 6:17-26.
[6] Lee KS, Park KW. Social determinants of the association among cerebrovascular disease, hearing loss and cognitive impairment in a middle-aged or older population:recurrent neural network analysis of the Korean Longitudinal Study of Aging (2014-2016)[J]. Geriatr Gerontol Int, 2019, 19:711-716.
[7] Han C, Yang Y, Ruan S, et al. The predictive value of serum p-CREB level on secondary cognitive impairment in patients with mild-to-moderate craniocerebral trauma[J]. Neurosurg Rev, 2019, 42:715-720.
[8] Fenech M. Vitamins associated with brain aging, mild cognitive impairment, and Alzheimer disease:biomarkers, epidemiological and experimental evidence, plausible mechanisms, and knowledge gaps[J]. Adv Nutr, 2017, 8:958-970.
[9] Fan J, Tao W, Li X, et al. The contribution of genetic factors to cognitive impairment and dementia:apolipoprotein E gene, gene interactions, and polygenic risk[J]. Int J Mol Sci, 2019, 20:E1177.
[10] Zang X, Cheng ZY, Sun Y, et al. The ameliorative effects and underlying mechanisms of dopamine D1-like receptor agonist SKF38393 on Aβ1-42-induced cognitive impairment[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2018, 81:250-261.
[11] Singh P, Sharma B. Selective serotonin-norepinephrine re-uptake inhibition limits renovas-cular-hypertension induced cognitive impairment, endothelial dysfunction, and oxidative stress injury[J]. Curr Neurovasc Res, 2016, 13:135-146.
[12] Mendes T, Cardoso S, Guerreiro M, et al. Can subjective memory complaints identify Aβ positive and Aβ negative amnestic mild cognitive impairment patients?[J]. J Alzheimers Dis, 2019, 70:1103-1111.
[13] Dani M, Wood M, Mizoguchi R, et al. Tau aggregation correlates with amyloid deposition in both mild cognitive impairment and Alzheimer's disease subjects[J]. J Alzheimers Dis, 2019, 70:455-465.
[14] Zhang Y, Mao X, Lin R, et al. Electroacupuncture ameliorates cognitive impairment through inhibition of Ca2+-mediated neurotoxicity in a rat model of cerebral ischaemia-reperfusion injury[J]. Acupunct Med, 2018, 36:401-407.
[15] Smith MA, Zhu X, Tabaton M, et al. Increased iron and free radical generation in preclinical Alzheimer disease and mild cognitive impairment[J]. J Alzheimers Dis, 2010, 19:363-372.
[16] Hay M, Polt R, Heien ML, et al. A novel angiotensin-(1-7) glycosylated Mas receptor agonist for treating vascular cognitive impairment and inflammation-related memory dysfunction[J]. J Pharmacol Exp Ther, 2019, 369:9-25.
[17] Chen N, Yang M, Zhou M, et al. L-carnitine for cognitive enhancement in people without cognitive impairment[J]. Cochrane Database Syst Rev, 2017, 3:CD009374.
[18] Zuo L J, Piao Y S, Li L X, et al. Phenotype of postural instability/gait difficulty in Parkinson disease:relevance to cognitive impairment and mechanism relating pathological proteins and neurotransmitters[J]. Sci Rep, 2017, 7:44872-44881.
[19] Kaundal M, Deshmukh R, Akhtar M. Protective effect of betulinic acid against intracerebroventricular streptozotocin induced cognitive impairment and neuronal damage in rats:possible neurotransmitters and neuroinflammatory mechanism[J]. Pharmacol Rep, 2018, 70:540-548.
[20] Chen NH. Neurotransmitters and Neurological Disorders (神经递质与神经系统疾病)[M]. Beijing:China Union Medical University Press, 2012:1-18.
[21] Li BY, Wang Y, Tang HD, et al. The role of cognitive activity in cognition protection:from bedside to bench[J]. Transl Neurodegener, 2017, 6:7-24.
[22] Engeroff T, Vogt L, Fleckenstein J, et al. Lifespan leisure physical activity profile, brain plasticity and cognitive function in old age[J]. Aging Ment Health, 2019, 23:811-818.
[23] Yeh TT, Chang KC, Wu CY, et al. Effects and mechanism of the HECT study (hybrid exercise-cognitive trainings) in mild ischemic stroke with cognitive decline:fMRI for brain plasticity, biomarker and behavioral analysis[J]. Contemp Clin Trials Commun, 2018, 9:164-171.
[24] Wang S, Ma ZZ, Lu YC, et al. The localization research of brain plasticity changes after brachial plexus pain:sensory regions or cognitive regions?[J]. Neural Plast, 2019, 2019:7381609.
[25] Zhang JT. Epigenetic mechanism in cognitive process[J]. Chin Pharmacol Bull (中国药理学通报), 2015, 3:1-6.
[26] Carella A, Tejedor JR, García MG, et al. Epigenetic downregulation of TET3 reduces genome-wide 5hmC levels and promotes glioblastoma tumorigenesis[J]. Int J Cancer, 2019, 146:373-387.
[27] Suarez A, Lahti J, Czamara D, et al. The epigenetic clock and pubertal, neuroendocrine, psychiatric, and cognitive[J]. Clin Epigenetics, 2018, 10:96-108.
[28] Gareri P, Castagna A, Cotroneo AM, et al. The citicholinage study:citicoline plus cholinesterase inhibitors in aged patients affected with Alzheimer's disease study[J]. J Alzheimers Dis, 2017, 56:557-565.
[29] Hill WD. A Further comment on ‘large-scale cognitive GWAS meta-analysis reveals tissue-specific neural expression and potential nootropic drug targets’ by Lam et al[J]. Twin Res Hum Genet, 2018, 21:538-545.
[30] Shang X, Shang Y, Fu J, et al. Nicotine significantly improves chronic stress-induced impairments of cognition and synaptic plasticity in mice[J]. Mol Neurobiol, 2017, 54:4644-4658.
[31] de Souza IBMB, Meurer YDSR, Tavares PM, et al. Episodic-like memory impairment induced by sub-anaesthetic doses of ketamine[J]. Behav Brain Res, 2019, 359:165-171.
[32] Wang H, Sui H, Zheng Y, et al. Curcumin-primed exosomes potently ameliorate cognitive function in AD mice by inhibiting hyperphosphorylation of the Tau protein through the AKT/GSK-3β pathway[J]. Nanoscale, 2019, 11:7481-7496.
[33] Peyrovian B, Rosenblat JD, Pan Z, et al. The glycine site of NMDA receptors:a target for cognitive enhancement in psychiatric disorders[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2019, 92:387-404.
[34] Beaudoin-Gobert M, Sgambato-Faure V. Serotonergic pharmacology in animal models:from behavioral disorders to dyskinesia[J]. Neuropharmacology, 2014, 81:15-30.
[35] Huang D, Liu D, Yin J, et al. Glutamate-glutamine and GABA in brain of normal aged and patients with cognitive impairment[J]. Eur Radiol, 2017, 27:2698-2705.
[36] Siuda J, Patalong-Ogiewa M,ŻmudaW, et al. Cognitive impairment and BDNF serum levels[J]. Neurol Neurochir Pol, 2017, 51:24-32.
[37] Lee HJ, Son Y, Lee M, et al. Sodium butyrate prevents radiation-induced cognitive impairment by restoring pCREB/BDNF expression[J]. Neural Regen Res, 2019, 14:1530-1535.
[38] Oh J, Kim JS. Compound K derived from ginseng:neuroprotection and cognitive improvement[J]. Food Funct, 2016, 7:4506-4515.
[39] Gonzalez-Lima F, Barksdale BR, Rojas JC. Mitochondrial respiration as a target for neuroprotection and cognitive enhancement[J]. Biochem Pharmacol[J], 2014, 88:584-593.
[40] Li Y, Zhang YN, Chen YJ, et al. Role of GDNF in behavioral and cognitive impairment induced by chronic stress and aging in mice[J]. Chin J Appl Physiol (中国应用生理学杂志), 2013, 29:52-56.
[41] Kauer JA,Gibson HE. Hot flash:TRPVchannels in the brain[J]. Trends Neurosci, 2009, 32:215-224.
[42] Ren SY, Wang ZZ, Chen NH. Research progress on anti-depression effects of ginsenosides[J]. Acta Pharm Sin (药学学报), 2019, 54:2204-2208.
[43] Li DC, Bao XQ, Sun H, et al. Research progress in the study of protective effect of tanshinone IIA on cerebral[J]. Acta Pharm Sin (药学学报), 2015, 50:635-639.
[44] Wu HY, Jiang H, Jiang YJ. Research about tenuifolin improving cognitive impairment of mice with vascular dementia by regulating cholinergic circuits[J]. J Clin Exp Med (临床和实验医学杂志), 2018, 17:1695-1699.