药学学报, 2020, 55(5): 884-891
引用本文:
陈云雨, 胡克, 付正豪, 牛夏忆, 张晶, 刘晓平. 靶向β-catenin/TCF4相互作用小分子抑制剂荧光偏振高通量筛选模型的建立与应用[J]. 药学学报, 2020, 55(5): 884-891.
CHEN Yun-yu, HU Ke, FU Zheng-hao, NIU Xia-yi, ZHANG Jing, LIU Xiao-ping. Development of a fluorescence polarization-based high-throughput screening assay to identify antagonists targeting β-catenin/TCF4 interaction[J]. Acta Pharmaceutica Sinica, 2020, 55(5): 884-891.

靶向β-catenin/TCF4相互作用小分子抑制剂荧光偏振高通量筛选模型的建立与应用
陈云雨1, 胡克1, 付正豪1, 牛夏忆1, 张晶2, 刘晓平1
1. 皖南医学院药物筛选与评价研究所, 安徽 芜湖 241002;
2. 中国医学科学院北京协和医学院医药生物技术研究所, 北京 100050
摘要:
基于荧光偏振(fluorescence polarization,FP)原理,建立并应用以β-catenin/TCF4(T-cell factor 4)相互作用为靶标的小分子抑制剂荧光偏振高通量筛选模型获得苗头化合物。利用大肠杆菌原核表达系统,原核表达和分离纯化重组人β-catenin,以酶联免疫吸附实验(enzyme-linked immunosorbent assay,ELISA)进行生物学活性鉴定。以异硫氰酸荧光素(fluorescence isothiocyanate,FITC)标记的TCF4多肽为荧光探针,通过优化FITC-TCF4与β-catenin反应浓度,建立并应用靶向β-catenin/TCF4相互作用小分子抑制剂荧光偏振高通量筛选模型进行苗头化合物筛选。利用大肠杆菌原核表达系统成功进行了重组人β-catenin原核表达与分离纯化。ELISA实验证实了纯化的重组人β-catenin具有良好的生物学活性。选用20 nmol·L-1 FITC-TCF4和100 nmol·L-1 β-catenin,成功建立了Z'因子为0.88的荧光偏振高通量筛选模型。应用本筛选模型进行高通量筛选,成功筛选到了血根碱(sanguinarine)、白屈菜红碱(chelerythrine)和化合物S720具有良好的抑制活性。本研究成功建立了适用于靶向β-catenin/TCF4相互作用小分子抑制剂筛选的荧光偏振高通量筛选模型,为新型Wnt抑制剂的高效化和理性化发现奠定了基础。
关键词:   
Development of a fluorescence polarization-based high-throughput screening assay to identify antagonists targeting β-catenin/TCF4 interaction
CHEN Yun-yu1, HU Ke1, FU Zheng-hao1, NIU Xia-yi1, ZHANG Jing2, LIU Xiao-ping1
1. Institute for Drug Screening and Evaluation, Wannan Medical College, Wuhu 241002, China;
2. Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
Abstract:
To develop a fluorescence polarization (FP)-based high-throughput screening (HTS) assay to identify novel small-molecule antagonists targeting β-catenin/TCF4 (T-cell factor 4) interaction, recombinant human β-catenin was expressed in Escherichia coli Rosetta (DE3) cells and purified by HisTrapTM column. The bioactivity of purified β-catenin was further analyzed by enzyme-linked immunosorbent assay (ELISA). According to FP principle, the β-catenin/TCF4 binding model was performed, and fluorescence isothiocyanate (FITC) labeled TCF4 peptide (FITC-TCF4) served as the molecular probe of adaptor for binding to β-catenin. The FITC-TCF4 and β-catenin working concentration were optimized, and the binding conditions (complex stability and dimethylsulfoxide (DMSO) tolerance) have been investigated yet for further hits screening. The results showed that recombinant human β-catenin was successfully expressed and purified β-catenin exhibited favorable bioactivity in ELISA binding assay. Subsequently, the FP-based HTS assay was performed using 20 nmol·L-1 FITC-TCF4 and 100 nmol·L-1 β-catenin. Under these optimized conditions, a high Zxfactor of 0.88 was achieved in a 384-well format and this FP-based HTS assay was very stable with regard to DMSO. Through screening of a natural-based product library (NBPL) using the established FP-based HTS assay, three hits (sanguinarine, chelerythrine, and compound S720) were identified as potential β-catenin/TCF4 interaction antagonists. Taken together, we have successfully developed a simple, robust and reliable FP-based HTS assay for screening of novel antagonists targeting β-catenin/TCF4 interaction.
Key words:   
收稿日期: 2019-12-06
DOI: 10.16438/j.0513-4870.2019-0998
基金项目: 国家自然科学基金资助项目(81703546);安徽省自然科学基金资助项目(1808085QH265);安徽省高校自然科学研究重大项目(KJ2019ZD30);吉林省科技发展计划项目(20160520045JH);中国医学科学院医学与健康科技创新工程(2017-I2M-1-012);安徽省大学生创新创业训练计划项目(S201910368083).
通讯作者: 张晶,Tel:86-10-63180623,E-mail:jingjing-506@hotmail.com;刘晓平,Tel:86-553-3932601,E-mail:liuxiaoping@wnmc.edu.cn
Email: jingjing-506@hotmail.com;liuxiaoping@wnmc.edu.cn
相关功能
PDF(815KB) Free
打印本文
0
作者相关文章

参考文献:
[1] Du LB, Li HZ, Wang YQ, et al. Report of colorectal cancer incidence and mortality in China, 2013[J]. Chin J Oncol (中华肿瘤杂志), 2017, 39:701-706.
[2] Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018[J]. CA Cancer J Clin, 2018, 68:7-30.
[3] Iqbal W, Alkarim S, AlHejin A, et al. Targeting signal transduction pathways of cancer stem cells for therapeutic opportunities of metastasis[J]. Oncotarget, 2016, 7:76337-76353.
[4] Sebio A, Kahn M, Lenz HJ. The potential of targeting Wnt/β-catenin in colon cancer[J]. Exp Opin Ther Targets, 2014, 18:611-615.
[5] Ma HY, He M, Wei MJ. Research progress on targeting effect and regulating mechanisms of the stemness of cancer stem cells[J]. Acta Pharm Sin (药学学报), 2016, 51:189-196.
[6] Anastas JN, Moon RT. WNT signalling pathways as therapeutic targets in cancer[J]. Nat Rev Cancer, 2013, 13:11-26.
[7] Zhan T, Rindtorff N, Boutros M. Wnt signaling in cancer[J]. Oncogene, 2017, 36:1461-1473.
[8] Lepourcelet M, Chen YN, France DS, et al. Small-molecule antagonists of the oncogenic Tcf/beta-catenin protein complex[J]. Cancer Cell, 2004, 5:91-102.
[9] Gonsalves FC, Klein K, Carson BB, et al. An RNAi-based chemical genetic screen identifies three small-molecule inhibitors of the Wnt/wingless signaling pathway[J]. Proc Natl Acad Sci U S A, 2011, 108:5954-5963.
[10] Jang GB, Hong IS, Kim RJ, et al. Wnt/β-catenin small-molecule inhibitor CWP232228 preferentially inhibits the growth of breast cancer stem-like cells[J]. Cancer Res, 2015, 75:1691-1702.
[11] Fang L, Zhu Q, Neuenschwander M, et al. A small-molecule antagonist of the β-catenin/TCF4 interaction blocks the self-renewal of cancer stem cells and suppresses tumorigenesis[J]. Cancer Res, 2016, 76:891-901.
[12] Trosset JY, Dalvit C, Knapp S, et al. Inhibition of protein-protein interactions:the discovery of druglike beta-catenin inhibitors by combining virtual and biophysical screening[J]. Proteins, 2006, 64:60-67.
[13] Yan M, Li G, An J. Discovery of small molecule inhibitors of the Wnt/β-catenin signaling pathway by targeting β-catenin/Tcf4 interactions[J]. Exp Biol Med, 2017, 242:1185-1197.
[14] Cheng X, Xu X, Chen D, et al. Therapeutic potential of targeting the Wnt/β-catenin signaling pathway in colorectal cancer[J]. Biomed Pharmacother, 2019, 110:473-481.
[15] Poy F, Lepourcelet M, Shivdasani RA, et al. Structure of a human Tcf4-beta-catenin complex[J]. Nat Struct Biol, 2001, 8:1053-1057.
[16] Fasolini M, Wu X, Flocco M, et al. Hot spots in Tcf4 for the interaction with beta-catenin[J]. J Biol Chem, 2003, 278:21092-21098.
[17] Chen YY, Niu XY, Li Y, et al. Development of an ELISA-based high throughput screening method for novel anticancer agents targeting β-catenin/Lef1 interaction[J]. Chin J Biotech (生物工程学报), 2019, 35:707-717.
[18] Nikolovska-Coleska Z, Wang R, Fang X, et al. Development and optimization of a binding assay for the XIAP BIR3 domain using fluorescence polarization[J]. Anal Biochem, 2004, 332:261-273.
[19] Zhu MR, Du DH, Hu JC, et al. Development of a high-throughput fluorescence polarization assay for the discovery of EZH2-EED interaction inhibitors[J]. Acta Pharmacol Sin, 2018, 39:302-310.
[20] Jiang YH, Zhang J, Chen YY, et al. Screening of small molecule inhibitors for PLK1 PBD and evaluation of antitumor activities[J]. Acta Pharm Sin (药学学报), 2017, 52:409-415.
[21] Chen YY, Liu G, Zhang J, et al. Bacterial expression, purification and biological activity evaluation of Plk1 PBD protein[J]. J Chongqing Med Univ (重庆医科大学学报), 2018, 43:1453-1457.
[22] Yang XH, Xu GJ, Zhang XY, et al. A fluorescence polarization immunoassay for the detection of aflatoxins in herbal teas[J]. Acta Pharm Sin (药学学报), 2017, 52:620-624.
[23] He Q, Cui X, Shen D, et al. Development of a simple, rapid and high-throughput fluorescence polarization immunoassay for glycocholic acid in human urine[J]. J Pharm Biomed Anal, 2018, 158:431-437.
[24] Zhang H, Wu Q, Berezin MY, et al. Fluorescence anisotropy (polarization):from drug screening to precision medicine[J]. Expert Opin Drug Discov, 2015, 10:1145-1161.
[25] Achkar IW, Mraiche F, Mohammad RM, et al. Anticancer potential of sanguinarine for various human malignancies[J]. Future Med Chem, 2017, 9:933-950.
[26] Almeida IV, Fernandes LM, Biazi BI, et al. Evaluation of the anticancer activities of the plant alkaloids sanguinarine and chelerythrine in human breast adenocarcinoma cells[J]. Anticancer Agents Med Chem, 2017, 17:1586-1592.
[27] Fu C, Guan G, Wang H. The anticancer effect of sanguinarine:a review[J]. Curr Pharm Des, 2018, 24:2760-2764.
[28] Yang J, Fang Z, Wu J, et al. Construction and application of a lung cancer stem cell model:antitumor drug screening and molecular mechanism of the inhibitory effects of sanguinarine[J]. Tumor Biol, 2016, 37:13871-13883.