药学学报, 2020, 55(8): 1914-1922
引用本文:
郝单丽, 王杰, 谢冉, 岳巧欣, 易红, 臧琛, 赵庆贺, 陈燕军. pH敏感多西紫杉醇纳米胶束的制备及其增强小鼠的抑瘤活性研究[J]. 药学学报, 2020, 55(8): 1914-1922.
HAO Dan-li, WANG Jie, XIE Ran, YUE Qiao-xin, YI Hong, ZANG Chen, ZHAO Qing-he, CHEN Yan-jun. pH responsive docetaxel micelles with improved therapeutic efficacy on mice xenograft tumor[J]. Acta Pharmaceutica Sinica, 2020, 55(8): 1914-1922.

pH敏感多西紫杉醇纳米胶束的制备及其增强小鼠的抑瘤活性研究
郝单丽, 王杰, 谢冉, 岳巧欣, 易红, 臧琛, 赵庆贺, 陈燕军
中国中医科学院中药研究所, 北京 100700
摘要:
抗肿瘤药物的非特异性释药是化疗药物对正常组织产生毒副作用的主要原因。利用纳米技术实现抗肿瘤药物的特异性与响应性递药是提高药物治疗效果、减少毒副反应的重要途径之一。本研究合成了pH敏感聚乙二醇单甲醚-聚乳酸-聚-β-氨基酯[poly (methoxy-ethylene glycol)-poly (lactic acid)-poly-(β-amino ester),PBAE]三嵌段共聚物,并制备胶束负载多西紫杉醇(DTX),以提高DTX抗肿瘤活性。通过开环聚合及Michael加成合成共聚物,核磁共振波谱法表征其结构和分子量,酸碱滴定法测定碱解离常数(pKb),荧光法测定临界胶束浓度(CMC)。采用薄膜水化法制备载DTX纳米胶束,激光粒度仪测定粒径和分布及稳定性,HPLC测定载药量、包封率及累积药物释放量。载药胶束粒径为10~100 nm,粒径分布较窄;制备的2种载药胶束PBAE1-DTX和PBAE2-DTX中DTX的载药量分别为(5.3±0.10)%和(4.9±0.05)%,包封率分别为(93.8±1.70)%和(87.2±4.10)%。建立小鼠Lewis肺癌模型,利用尾静脉注射给药方式分别考察游离药物(DTX)、非pH敏感载药胶束聚乙二醇-聚乳酸-DTX (PELA-DTX)和pH敏感载药胶束(PBAE1-DTX)的抑瘤效果。所有动物实验均符合动物伦理学标准,并获得中国中医科学院中药研究所动物伦理委员会批准(批准号2017090110)。体内抑瘤实验表明,在给药剂量为10和20 mg·kg-1时,纳米药物对小鼠肺腺癌移植瘤均显示出较好的抗肿瘤活性。比较各组小鼠肿瘤体积增长速率:PBAE1-DTX 20 mg·kg-1 < PBAE1-DTX 10 mg·kg-1 < PELA-DTX 10 mg·kg-1 < DTX 10 mg·kg-1 < 生理盐水,其中PBAE1-DTX组的疗效更为显著。本研究制备的pH敏感DTX纳米胶束值得进一步研究,以促进DTX在抗肿瘤领域的应用。
关键词:   
pH responsive docetaxel micelles with improved therapeutic efficacy on mice xenograft tumor
HAO Dan-li, WANG Jie, XIE Ran, YUE Qiao-xin, YI Hong, ZANG Chen, ZHAO Qing-he, CHEN Yan-jun
Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
Abstract:
The non-specific administration of antitumor drugs is the main cause for the side effects of chemotherapy drugs on normal tissues. The application of nanotechnology in the delivery of anti-tumor drugs is one of the important ways to improve the therapeutic effect and to reduce the side effects. The current study aimed to synthesize pH responsive poly (methoxy-ethylene glycol)-poly(lactic acid)-poly-(β-amino ester) (PBAE) triblock copolymers to deliver docetaxel (DTX) and improve the anti-tumor activity of DTX. PBAE was synthesized by ring opening polymerization and Michael addition reaction, its structure and molecular weight was characterized by 1H NMR, the dissociation constant of base (pKb) were determined by acid-base titration method. The critical micelles concentration (CMC) of copolymers was measured by pyrene fluorescence spectroscopy. DTX loaded copolymer micelles were prepared by membrane hydration method. The size and its distribution as well as the stability of micelles were determined by laser light scattering analysis. The drug loading content (DL), entrapment efficiency (EE) and cumulative drug release from micelles were evaluated by high-performance liquid chromatography (HPLC). The sizes of DTX drug-loaded micelles were in the range of 10 to 100 nm with narrow distribution. DL of DTX in PBAE1 and PBAE2 micelles was (5.3±0.10)% and (4.9±0.05)%, respectively, with EE was (93.8±1.70)% and (87.2±4.10)%, respectively. The drug-loaded micelles showed pH sensitive drug release properties under weak acidic conditions, which showed potential drug release of DTX under mild acidic tumor environment. A mouse Lewis lung carcinoma model was established to evaluate the therapeutic efficacy of micellar DTX formulations. Significant inhibitory effect of the nanodrugs was observed with DTX dosages of 10 and 20 mg·kg-1, respectively. Moreover, the pH responsive PBAE1-DTX micellar drug exhibited stronger therapeutic efficacy on mice xenograft tumor, as compared with the non pH sensitive micellar drug (PELA-DTX) and free DTX. All animal experiments were performed according to the animal ethical standards and approved by the Animal Experiments and Ethical Committee of China Academy of Chinese Medical Sciences (No. 2017090110). The in vivo anti-tumor activity studies showed that the tumor volume growth rates of mice in different drug-administered groups were:PBAE1-DTX 20 mg·kg-1 < PBAE1-DTX 10 mg·kg-1 < PELA-DTX 10 mg·kg-1 < DTX 10 mg·kg-1 < normal saline, with the PBAE1-DTX group as the most potent group for tumor inhibition. The current pH sensitive DTX nano-micelles showed high potential in further studies to promote the application of nano DTX formulations for tumor treatment.
Key words:   
收稿日期: 2019-10-28
DOI: 10.16438/j.0513-4870.2019-0851
基金项目: 国家自然科学基金资助项目(81974461);国家“重大新药创制”科技重大专项(2018ZX09201-011);北京市自然科学基金资助项目(2192060).
通讯作者: 赵庆贺,Tel:86-10-84036059,E-mail:qhzhao@icmm.ac.cn;陈燕军,Tel:86-10-64021051,E-mail:yjchen@icmm.ac.cn
Email: qhzhao@icmm.ac.cn;yjchen@icmm.ac.cn
相关功能
PDF(1123KB) Free
打印本文
0
作者相关文章

参考文献:
[1] Cao X. Research progress of docetaxel polymer micelles[J]. Chin New Drug J (中国新药杂志), 2017, 26:1137-1143.
[2] Hua XM, Peng H, Wang JT, et al. Application effect of docetaxel in chemotherapy for advanced non-small cell lung cancer[J]. Chin Mod Med (中国当代医药), 2019, 26:53-55.
[3] Chen Y, Li J, Chen S, et al. Nab-paclitaxel in combination with cisplatin versus docetaxel plus cisplatin as first-line therapy in non-small cell lung cancer[J]. Sci Rep, 2017, 7:10760.
[4] Liang Z. Studies on the Anti-tumor Efficacy of the Docetaxel Targeting Nanoparticles for Small Cell Lung Cancer (多西紫杉醇靶向纳米药物对小细胞肺癌治疗作用的研究)[D]. Beijing:Peking Union Medical College, 2015.
[5] Zhang W, Shi Y, Chen Y, et al. Enhanced antitumor efficacy by paclitaxel-loaded pluronic P123/F127 mixed micelles against non-small cell lung cancer based on passive tumor targeting and modulation of drug resistance[J]. Eur J Pharm Biopharm, 2010, 75:341-353.
[6] Huang RB, Tang GT. Progress in the study of acid-sensitive micelles for the targeting drug delivery system[J]. Acta Pharm Sin (药学学报), 2012, 47:440-445.
[7] Kamaly N, Xiao Z, Valencia PM, et al. Targeted polymeric therapeutic nanoparticles:design, development and clinical translation[J]. Chem Soc Rev, 2012, 41:2971-3010.
[8] Barreto JA, O'Malley W, Kubeil M, et al. Nanomaterials:applications in cancer imaging and therapy[J]. Adv Mat, 2011, 23:H18-H40.
[9] Doppalapudi S, Jain A, Domb AJ, et al. Biodegradable polymers for targeted delivery of anti-cancer drugs[J]. Expert Opin Drug Deliv, 2016, 13:891-909.
[10] Nicolas J, Mura S, Brambilla D, et al. Design, functionalization strategies and biomedical applications of targeted biodegradable/biocompatible polymer-based nanocarriers for drug delivery[J]. Chem Soc Rev, 2013, 42:1147-1235.
[11] Li WN, Xu Q, Wang YH, et al. Poly(β-amino esters)-based barriers for tumor targeted delivery system[J]. Acta Pharm Sin (药学学报), 2015, 50:434-439.
[12] Zhang C, An T, Wang D, et al. Stepwise pH-responsive nanoparticles containing charge-reversible pullulan-based shells and poly(β-aminoester)/poly(lactic-co-glycolic acid) cores as carriers of anticancer drugs for combination therapy on hepatocellular carcinoma[J]. J Control Release 2016, 226:193-204.
[13] Wang W, Xiong W, Wan JL, et al. The decrease of PAMAM dendrimer-induced cytotoxicity by PEGylation via attenuation of oxidative stress[J]. Nanotechnology, 2009, 20:105103.
[14] Patil ML, Zhang M, Minko T. Multifunctional triblock nanocarrier (PAMAM-PEG-PLL) for the efficient intracellular siRNA delivery and gene silencing[J]. ACS Nano, 2011, 5:1877-1887.
[15] Song W, Tang Z, Li M, et al. Tunable pH-sensitive poly(β-amino ester)s synthesized from primary amines and diacrylates for intracellular drug delivery[J]. Macromol Biosci, 2012, 12:1375-1383.
[16] Hrkach J, Von Hoff D, Ali MM, et al. Preclinical development and clinical translation of a PSMA-targeted docetaxel nanoparticle with a differentiated pharmacological profile[J]. Sci Transl Med, 2012, 4:128-139.
[17] Von Hoff DD, Mita MM, Ramanathan RK, et al. Phase I study of PSMA-targeted docetaxel-containing nanoparticle BIND-014 in patients with advanced solid tumors[J]. Clin Cancer Res, 2016, 22:3157-3163.
[18] Du LJ, Yue QX, Li ZZ, et al. Preparation of paclitaxel-loaded copolymer micelles and its pH-responsive properties[J]. Chin J Exp Trad Med Form (实验方剂学杂志), 2015:9-12.
[19] Chen YJ, Yue QX, De GJ, et al. Inhibition of breast cancer metastasis by paclitaxel-loaded pH responsive poly (β-amino ester) copolymer micelles[J]. Nanomedicine, 2017, 12:147.
[20] Li S, Xiao YY, Su ZG, et al. Preparation of BSA-coated cationic nanostructure lipid carries and pharmacokinetics and biodistribution after intravenous injection[J]. J China Pharm Univ (中国药科大学学报), 2012, 43:406-411.
[21] Wang YJ, Wang J, Hao DL, et al. Preparation of docetaxel-loaded nanomicelles and their anti-Lewis lung cancer effect in vitro[J]. China J Chin Mater Med (中国中药杂志), 2019, 44:2251-2259.
[22] Ma YY, Li L, Huang HF, et al. Advances of tumor targeting peptides drug delivery system with pH-sensitive activities[J]. Acta Pharm Sin (药学学报), 2016, 51:717-724.
[23] Kamat CD, Shmueli RB, Connis N, et al. Poly(β-amino ester) nanoparticle delivery of TP53 has activity against small cell lung cancer in vitro and in vivo[J]. Mol Cancer Ther, 2013, 12:405-415.
[24] Jia L, Qiao MX, Hu HY, et al. The characteristics of temperature/pH sensitive block copolymer micelles in vitro[J]. Acta Pharm Sin (药学学报), 2011, 46:839-844.
[25] Maeda H, Wu J, Sawa T, et al. Tumor vascular permeability and the EPR effect in macromolecular therapeutics:a review[J]. J Control Release, 2000, 65:271-284.
[26] Gebauer F, Gelis S, Zander H, et al. Tenascin-C serum levels and its prognostic power in non-small cell lung cancer[J]. Oncotarget, 2016, 7:20945.
[27] Sriraman SK, Aryasomayajula B, Torchilin VP. Barriers to drug delivery in solid tumors[J]. Tissue Barriers, 2014, 2:e29528.
[28] Wang J, Wang YJ, Hao DL, et al. Pharmacokinetics and tumor tissue distribution of docetaxel nanomicelles in mice[J]. Chin J Exp Tradit Med Form (中国实验方剂学杂志), 2019, 25:140-145.