药学学报, 2020, 55(12): 2751-2776
引用本文:
陈士林, 孙奕, 万会花, 张晗, 赵庆贺. 中药与天然药物2015~2020年研究亮点评述[J]. 药学学报, 2020, 55(12): 2751-2776.
CHEN Shi-lin, SUN Yi, WAN Hui-hua, ZHANG Han, ZHAO Qing-he. Highlights on the progress of traditional Chinese medicine and natural drugs during 2015-2020[J]. Acta Pharmaceutica Sinica, 2020, 55(12): 2751-2776.

中药与天然药物2015~2020年研究亮点评述
陈士林1, 孙奕1, 万会花1, 张晗2,3, 赵庆贺1
1. 中国中医科学院中药研究所, 北京 100700;
2. 天津中医药大学, 天津 301617;
3. 成都中医药大学, 四川 成都 611137
摘要:
中药与天然药物在2015~2020年取得多项突破性进展,屠呦呦青蒿素研究获得诺贝尔奖促使国内外掀起研究中药与天然药物的热潮,“甘露寡糖二酸”、“桑枝总生物碱片”等原创药物获得新药证书;多项研究成果入选年度“中国十大医学进展”,在Nature、ScienceNew England Journal of MedicineLancet等国际顶级期刊发表了高水平的研究论文,本文梳理总结了这五年期间国内外科学家在国际著名期刊发表中药与天然药物相关的亮点学术成果,并对其在化学、药物资源、药理、制剂、新药开发等相关领域取得的重要进展进行了评述,以期追踪和报道中药与天然药物领域发展的前沿和热点,并通过对其分析得出学科发展的启示和展望。
关键词:    中药      天然药      天然产物      药用植物      药理      制剂     
Highlights on the progress of traditional Chinese medicine and natural drugs during 2015-2020
CHEN Shi-lin1, SUN Yi1, WAN Hui-hua1, ZHANG Han2,3, ZHAO Qing-he1
1. Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China;
2. Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China;
3. Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
Abstract:
The scientific world has witnessed multiple outstanding breakthroughs in the field of traditional Chinese medicine and natural product derived drugs during 2015-2020. The research by Prof. Tu Youyou on artemisinin gained her as one of the winners of Nobel Prize in Physiology or Medicine in 2015, has also aroused profound impetus in the investigation of traditional Chinese medicine and natural product drugs. Mori ramulus alkaloids tablets and GV-971 capsules have been approved by National Medical Products Administration (NMPA) for clinical application. Some of the important research findings were selected as "Top 10 major medical advances" in China, and a plenty of research articles were accepted by world top publications such as Nature, Science, New England Journal of Medicine, as well as Lancet, etc. The current review summarized and commented on the research highlights of traditional Chinese medicine and natural drugs published in world top journals from 2015 to 2020, including the major progresses in the sub-divided areas of chemistry, molecular pharmacognosy, pharmacology and toxicology, as well as pharmaceutics. This report aims to follow and review the leading research and hot spots in fields of traditional Chinese medicine and natural drugs, and to provide prospects and inspirations in the interdisciplinary areas based on our preliminary analyses.
Key words:    Chinese materia medica    natural medicine    natural product    medicinal plant    pharmacology    pharmaceutics   
收稿日期: 2020-07-13
DOI: 10.16438/j.0513-4870.2020-1170
基金项目: 国家重点研发计划资助项目(2019YFC1711100).
通讯作者: 陈士林,E-mail:slchen@icmm.ac.cn
Email: slchen@icmm.ac.cn
相关功能
PDF(2584KB) Free
打印本文
0
作者相关文章
陈士林  在本刊中的所有文章
孙奕  在本刊中的所有文章
万会花  在本刊中的所有文章
张晗  在本刊中的所有文章
赵庆贺  在本刊中的所有文章

参考文献:
[1] Wang J, Xu C, Liao FL, et al. A temporizing solution to "Artemisinin Resistance"[J]. New Engl J Med, 2019, 380:2087-2089.
[2] Wang J, Xu C, Liao FL, et al. Suboptimal dosing triggers artemisinin partner drug resistance[J]. Lancet Infect Dis, 2019, 19:1167-1168.
[3] Wang J, Xu C, Lun Z, et al. Unpacking ‘artemisinin resistance’[J]. Trends Pharmacol Sci, 2017, 38:506-511.
[4] Kong LY, Tan R. Artemisinin, a miracle of traditional Chinese medicine[J]. Nat Prod Rep, 2015, 32:1617-1621.
[5] Tiwari MK, Chaudhary S. Artemisinin-derived antimalarial endoperoxides from bench-side to bed-side:chronological advancements and future challenges[J]. Med Res Rev, 2020, 40:1220-1275.
[6] Matsuda Y, Abe I. Biosynthesis of fungal meroterpenoids[J]. Nat Prod Rep, 2016, 33:26-53.
[7] Peng X, Qiu M. Meroterpenoids from Ganoderma species:a review of last five years[J]. Nat Prod Bioprospect, 2018, 8:137-149.
[8] Zhao Z, Wu L, Xie J, et al. Rhodomyrtus tomentosa (Aiton.):a review of phytochemistry, pharmacology and industrial applications research progress[J]. Food Chem, 2020, 309:125715.
[9] Qi C, Bao J, Wang J, et al. Asperterpenes A and B, two unprecedented meroterpenoids from Aspergillus terreus with BACE1 inhibitory activities[J]. Chem Sci, 2016, 7:6563-6572.
[10] Qin X, Rauwolf T, Li P, et al. Isolation and synthesis of novel meroterpenoids from Rhodomyrtus tomentosa:investigation of a reactive enetrione intermediate[J]. Angew Chem Int Ed, 2019, 58:4291-4296.
[11] Qin F, Zhang H, Di Q, et al. Ganoderma cochlear metabolites as probes to identify a COX-2 active site and as in vitro and in vivo anti-inflammatory agents[J]. Org Lett, 2020, 22:2574-2578.
[12] Zhou FJ, Nian Y, Yan YM, et al. Two new classes of T-type calcium channel inhibitors with new chemical scaffolds from Ganoderma cochlear[J]. Org Lett, 2015, 17:3082-3085.
[13] Fang X, Di Y, Zhang Y, et al. Unprecedented quassinoids with promising biological activity from Harrisonia perforata[J]. Angew Chem Int Ed, 2015, 54:5592-5595.
[14] Yu J, Liu Q, Sheng L, et al. Cipacinoids A-D, four limonoids with spirocyclic skeletons from Cipadessa cinerascens[J]. Org Lett, 2016, 18:444-447.
[15] Wang W, Liu X, Zhang M, et al. Taxodisones A and B:bioactive C30-terpenes with new skeletons from Taxodium distichum and their biosynthetic origin[J]. Chem Commun, 2020, 56:3329-3332.
[16] Niu CS, Li Y, Liu YB, et al. Pierisketolide A and pierisketones B and C, three diterpenes with an unusual carbon skeleton from the roots of Pieris formosa[J]. Org Lett, 2017, 19:906-909.
[17] Fan Y, Shi S, Deng G, et al. Crokonoids A-C, a highly rearranged and dual-bridged spiro diterpenoid and two other diterpenoids from Croton kongensis[J]. Org Lett, 2020, 22:929-933.
[18] Zhang W, Zhao J, Sheng L, et al. Mangelonoids A and B, two pairs of macrocyclic diterpenoid enantiomers from Croton mangelong[J]. Org Lett, 2018, 20:4040-4043.
[19] Xue GM, Han C, Chen C, et al. Artemisians A-D, diseco-guaianolide involved heterodimeric[4+2] adducts from Artemisia argyi[J]. Org Lett, 2017, 19:5410-5413.
[20] Wang TT, Wei YJ, Ge HM, et al. Acaulide, an osteogenic macrodiolide from Acaulium sp. H-JQSF, an isopod-associated fungus[J]. Org Lett, 2018, 20:1007-1010.
[21] Wu C, Der Heul HUV, Melnik AV, et al. Lugdunomycin, an angucycline-derived molecule with unprecedented chemical architecture[J]. Angew Chem Int Ed, 2019, 58:2809-2814.
[22] Cheol KM, Henrique M, Hwa JK, et al. Integration of genomic data with NMR analysis enables assignment of the full stereostructure of neaumycin B, a potent inhibitor of glioblastoma from a marine-derived Micromonospora[J]. J Am Chem Soc, 2018, 140:10775-10784.
[23] Song L, Jenner M, Masschelein J, et al. Discovery and biosynthesis of gladiolin:a Burkholderia gladioli antibiotic with promising activity against Mycobacterium tuberculosis[J]. J Am Chem Soc, 2017, 139:7974-7981.
[24] Hoffmann H, Kogler H, Heyse W, et al. Discovery, structure elucidation, and biological characterization of nannocystin A, a macrocyclic myxobacterial metabolite with potent antiproliferative properties[J]. Angew Chem Int Ed, 2015, 54:10145-10148.
[25] Moss NA, Seiler GS, Leao T, et al. Nature's combinatorial biosynthesis produces vatiamides A-F[J]. Angew Chem Int Ed, 2019, 58:9027-9031.
[26] Wyche TP, Ruzzini AC, Schwab L, et al. Tryptorubin A:a polycyclic peptide from a fungus-derived Streptomycete[J]. J Am Chem Soc, 2017, 139:12899-12902.
[27] Gao X, Fan Y, Liu Q, et al. Suadimins A-C, unprecedented dimeric quinoline alkaloids with antimycobacterial activity from Melodinus suaveolens[J]. Org Lett, 2019, 21:7065-7068.
[28] Zhang H, Shyaula S, Li J, et al. Himalensines A and B, alkaloids from Daphniphyllum himalense[J]. Org Lett, 2016, 18:1202-1205.
[29] Yu Z, Xiao D, Shun S, et al. Melocochines A and B, two alkaloids from the fruits of Melodinus cochinchinensis[J]. Org Lett, 2019, 21:9272-9275.
[30] Zhang ZJ, Wang C, Wu XD, et al. Phlegmadine A:a lycopodium alkaloid with a unique cyclobutane ring from Phlegmariurus phlegmaria[J]. J Org Chem, 2019, 84:11301-11305.
[31] Wu YZ, Shao S, Guo QL, et al. Aconicatisulfonines A and B, analgesic zwitterionic C20-diterpenoid alkaloids with a rearranged atisane skeleton from aconitum Aconitum carmichaelii[J]. Org Lett, 2019, 21:6850-6854.
[32] Guo Q, Xia H, Shi G, et al. Aconicarmisulfonine A, a sulfonated C-20-diterpenoid alkaloid from the lateral roots of Aconitum carmichaelii[J]. Org Lett, 2018, 20:816-819.
[33] Gao XH, Xu YS, Fan YY, et al. Cascarinoids A-C, a class of diterpenoid alkaloids with unpredicted conformations from Croton cascarilloides[J]. Org Lett, 2018, 20:228-231.
[34] Zhu H, Chen C, Tong Q, et al. Asperflavipine A:a cytochalasan a heterotetramer uniquely defined by a highly complex tetradecacyclic ring system from Aspergillus flavipes QCS12[J]. Angew Chem Int Ed, 2017, 56:5242-5246.
[35] Zhu H, Chen C, Xue Y, et al. Asperchalasine A, a cytochalasan dimer with an unprecedented decacyclic ring system, from Aspergillus flavipes[J]. Angew Chem Int Ed, 2015, 54:13374-13378.
[36] Wang W, Lei X, Yang Y, et al. Xylarichalasin A, a halogenated hexacyclic cytochalasan from the fungus Xylaria cf. curta[J]. Org Lett, 2019, 21:6957-6960.
[37] Wang W, Li ZL, Feng T, et al. Curtachalasins A and B, two cytochalasans with a tetracyclic skeleton from the endophytic fungus Xylaria curta E10[J]. Org Lett, 2018, 20:7758-7761.
[38] Wang W, Lei X, Ai H, et al. Cytochalasans from the endophytic fungus Xylaria cf. curta with resistance reversal activity against fluconazole-resistant Candida albicans[J]. Org Lett, 2019, 21:1108-1111.
[39] Su FY, Zhao Z, Ma SG, et al. Cnidimonins A-C, three types of hybrid dimer from Cnidium monnieri:structural elucidation and semisynthesis[J]. Org Lett, 2017, 19:4920-4923.
[40] Tang Z, Liu Y, Ma S, et al. Antiviral spirotriscoumarins A and B:two pairs of oligomeric coumarin enantiomers with a spirodienone-sesquiterpene skeleton from Toddalia asiatica[J]. Org Lett, 2016, 18:5146-5149.
[41] Vu V, Chen X, Kong L, et al. Melipatulinones A-C, three lignan-phloroglucinol hybrids from Melicope patulinervia[J]. Org Lett, 2020, 22:1380-1384.
[42] Wolfender J, Litaudon M, Touboul D, et al. Innovative omics-based approaches for prioritisation and targeted isolation of natural products-new strategies for drug discovery[J]. Nat Prod Rep, 2019, 36:855-868.
[43] Wolfender J, Nuzillard J, Hooft JJJ, et al. Accelerating metabolite identification in natural product research:toward an ideal combination of LC-HRMS/MS and NMR profiling, in silico databases and chemometrics[J]. Anal Chem, 2019, 91:704-742.
[44] Sindelar M, Patti GJ. Chemical discovery in the era of metabolomics[J]. J Am Chem Soc, 2020, 142:9097-9105.
[45] Wang M, Carver JJ, Phelan VV, et al. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking[J]. Nat Biotechnol, 2016, 34:828-837.
[46] Floros DJ, Jensen PR, Dorrestein PC, et al. A metabolomics guided exploration of marine natural product chemical space[J]. Metabolomics, 2016, 12:145-148.
[47] Allard P, Peresse T, Bisson J, et al. Integration of molecular networking and in-silico MS/MS fragmentation for natural products dereplication[J]. Anal Chem, 2016, 88:3317-3323.
[48] Crusemann M, Oneill EC, Larson CB, et al. Prioritizing natural product diversity in a collection of 146 bacterial strains based on growth and extraction protocols[J]. J Nat Prod, 2017, 80:588-597.
[49] Reher R, Kim HW, Zhang C, et al. A convolutional neural network-based approach for the rapid annotation of molecularly diverse natural products[J]. J Am Chem Soc, 2020, 142:4114-4120.
[50] Hautbergue T, Jamin EL, Debrauwer L, et al. From genomics to metabolomics, moving toward an integrated strategy for the discovery of fungal secondary metabolites[J]. Nat Prod Rep, 2018, 35:147-173.
[51] Yan Y, Liu Q, Zang X, et al. Resistance-gene-directed discovery of a natural-product herbicide with a new mode of action[J]. Nature, 2018, 559:415-418.
[52] Chevrette MG, Carlson CM, Ortega HE, et al. The antimicrobial potential of Streptomyces from insect microbiomes[J]. Nat Commun, 2019, 10:1-11.
[53] Ismail HM, Barton V, Phanchana M, et al. Artemisinin activity-based probes identify multiple molecular targets within the asexual stage of the malaria parasites Plasmodium falciparum 3D7[J]. Proc Natl Acad Sci U S A, 2016, 113:2080-2085.
[54] Li J, Casteels T, Frogne T, et al. Artemisinins target GABAA receptor signaling and impair alpha cell identity[J]. Cell, 2017, 168:86-100.
[55] Yi C, Yu J, Kim H, et al. Identification of actin as a direct proteomic target of berberine, using an affinity-based chemical probe and elucidation of its modulatory role in actin assembly[J]. Chem Commun, 2017, 53:7045-7047.
[56] Xu X, Li W, Li T, et al. Direct infusion-three-dimensional-mass spectrometry enables rapid chemome comparison among herbal medicines[J]. Anal Chem, 2020, 92:7646-7656.
[57] Ding X, Cao Y, Yuan Y, et al. Development of APTES-decorated HepG2 cancer stem cell membrane chromatography for screening active components from Salvia miltiorrhiza[J]. Anal Chem, 2016, 88:12081-12089.
[58] Chen L, Lv D, Chen X, et al. Biosensor-based active ingredients recognition system for screening STAT3 ligands from medical herbs[J]. Anal Chem, 2018, 90:8936-8945.
[59] Song W, Qiao X, Chen K, et al. Biosynthesis-based quantitative analysis of 151 secondary metabolites of licorice to differentiate medicinal Glycyrrhiza species and their hybrids[J]. Anal Chem, 2017, 89:3146-3153.
[60] Qiu S, Yang W, Shi X, et al. A green protocol for efficient discovery of novel natural compounds:characterization of new ginsenosides from the stems and leaves of Panax ginseng as a case study[J]. Anal Chim Acta, 2015, 893:65-76.
[61] Shi X, Yang W, Qiu S, et al. An in-source multiple collision-neutral loss filtering based nontargeted metabolomics approach for the comprehensive analysis of malonyl-ginsenosides from Panax ginseng, P. quinquefolius, and P. notoginseng[J]. Anal Chim Acta, 2017, 952:59-70.
[62] Qiao X, Lin X, Ji S, et al. Global profiling and novel structure discovery using multiple neutral loss/precursor ion scanning combined with substructure recognition and statistical analysis (MNPSS):characterization of terpene-conjugatred curcuminoids in Curcuma longa as a case study[J]. Anal Chem, 2016, 88:703-710.
[63] Wu C, Liu Y, Yang Y, et al. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods[J]. Acta Pharm Sin B, 2020, 10:766-788.
[64] Chen S, Song J, Sun C, et al. Herbal genomics:examining the biology of traditional medicines[J]. Science, 2015, 347:S27-S29.
[65] Guo L, Winzer T, Yang X, et al. The opium poppy genome and morphinan production[J]. Science, 2018, 362:343-347.
[66] Li Q, Ramasamy S, Singh P, et al. Gene clustering and copy number variation in alkaloid metabolic pathways of opium poppy[J]. Nat Commun, 2020, 11:1-13.
[67] Xu J, Chu Y, Liao B, et al. Panax ginseng genome examination for ginsenoside biosynthesis[J]. Gigascience, 2017, 6:1-15.
[68] Jayakodi M, Choi B, Lee S, et al. Ginseng Genome Database:an open-access platform for genomics of Panax ginseng[J]. BMC Plant Biol, 2018, 18:62.
[69] Chen W, Kui L, Zhang G, et al. Whole-genome sequencing and analysis of the Chinese herbal plant Panax notoginseng[J]. Mol Plant, 2017, 10:899-902.
[70] Zhang D, Li W, Xia E, et al. The medicinal herb Panax notoginseng genome provides insights into ginsenoside biosynthesis and genome evolution[J]. Mol Plant, 2017, 10:903-907.
[71] Kellner F, Kim J, Clavijo BJ, et al. Genome-guided investigation of plant natural product biosynthesis[J]. Plant J, 2015, 82:680-692.
[72] Su P, Guan H, Zhao Y, et al. Identification and functional characterization of diterpene synthases for triptolide biosynthesis from Tripterygium wilfordii[J]. Plant J, 2018, 93:50-65.
[73] Liu Y, Zhou J, Hu T, et al. Identification and functional characterization of squalene epoxidases and oxidosqualene cyclases from Tripterygium wilfordii[J]. Plant Cell Rep, 2019, 39:409-418.
[74] Tu L, Su P, Zhang Z, et al. Genome of Tripterygium wilfordii and identification of cytochrome P450 involved in triptolide biosynthesis[J]. Nat Commun, 2020, 11:1-12.
[75] Yuan Y, Jin X, Liu J, et al. The Gastrodia elata genome provides insights into plant adaptation to heterotrophy[J]. Nat Commun, 2018, 9:1615.
[76] Zhang G, Tian Y, Zhang J, et al. Hybrid de novo genome assembly of the Chinese herbal plant danshen (Salvia miltiorrhiza Bunge)[J]. Gigascience, 2015, 4:62.
[77] Xu H, Song J, Luo H, et al. Analysis of the genome sequence of the medicinal plant Salvia miltiorrhiza[J]. Mol Plant, 2016, 9:949-952.
[78] Song C, Liu Y, Song A, et al. The Chrysanthemum nankingense genome provides insights into the evolution and diversification of chrysanthemum flowers and medicinal traits[J]. Mol Plant, 2018, 11:1482-1491.
[79] Liu X, Liu Y, Huang P, et al. The genome of medicinal plant Macleaya cordata provides new insights into benzylisoquinoline alkaloids metabolism[J]. Mol Plant, 2017, 10:975-989.
[80] Mochida K, Sakurai T, Seki H, et al. Draft genome assembly and annotation of Glycyrrhiza uralensis, a medicinal legume[J]. Plant J, 2017, 89:181-194.
[81] Zhao Q, Yang J, Cui M, et al. The reference genome sequence of scutellaria baicalensis provides insights into the evolution of wogonin biosynthesis[J]. Mol Plant, 2019, 12:935-950.
[82] Shen Q, Zhang L, Liao Z, et al. The genome of Artemisia annua provides insight into the evolution of Asteraceae family and artemisinin biosynthesis[J]. Mol Plant, 2018, 11:776-788.
[83] Sun W, Leng L, Yin Q, et al. The genome of the medicinal plant Andrographis paniculata provides insight into the biosynthesis of the bioactive diterpenoid neoandrographolide[J]. Plant J, 2019, 97:841-857.
[84] Zhang J, Tian Y, Yan L, et al. Genome of plant maca (Lepidium meyenii) illuminates genomic basis for high-altitude adaptation in the central Andes[J]. Mol Plant, 2016, 9:1066-1077.
[85] Vining KJ, Johnson SR, Ahkami A, et al. Draft genome sequence of Mentha longifolia and development of resources for mint cultivar improvement[J]. Mol Plant, 2017, 10:323-339.
[86] Wan T, Liu Z, Li L, et al. A genome for gnetophytes and early evolution of seed plants[J]. Nat Plants, 2018, 4:82-89.
[87] Raymond O, Gouzy J, Just J, et al. The Rosa genome provides new insights into the domestication of modern roses[J]. Nat Genet, 2018, 50:772-777.
[88] Hibrand Saint-Oyant L, Ruttink T, Hamama L, et al. A high-quality genome sequence of Rosa chinensis to elucidate ornamental traits[J]. Nat Plants, 2018, 4:473-484.
[89] Xu Z, Xin T, Bartels D, et al. Genome analysis of the ancient tracheophyte Selaginella tamariscina reveals evolutionary features relevant to the acquisition of desiccation tolerance[J]. Mol Plant, 2018, 11:983-994.
[90] Zeng L, Tu X, Dai H, et al. Whole genomes and transcriptomes reveal adaptation and domestication of pistachio[J]. Genome Biol, 2019, 20:79.
[91] Hu L, Xu Z, Wang M, et al. The chromosome-scale reference genome of black pepper provides insight into piperine biosynthesis[J]. Nat Commun, 2019, 10:4702.
[92] Sánchez-Pérez R, Pavan S, Mazzeo R, et al. Mutation of a bHLH transcription factor allowed almond domestication[J]. Science, 2019, 364:1095-1098.
[93] Pu X, Li Z, Tian Y, et al. The honeysuckle genome provides insight into the molecular mechanism of carotenoid metabolism underlying dynamic flower coloration[J]. New Phytol, 2020, 227:930-943.
[94] Albert VA, Renner T. Aquatic angiosperm ambiguities answered[J]. Nat Plants, 2020, 6:181-183.
[95] Zhang L, Chen F, Zhang X, et al. The water lily genome and the early evolution of flowering plants[J]. Nature, 2020, 577:79-84.
[96] Xu Z, Pu X, Gao R, et al. Tandem gene duplications drive divergent evolution of caffeine and crocin biosynthetic pathways in plants[J]. BMC Biol, 2020, 18:63.
[97] Luo X, Reiter MA, Espaux LD, et al. Complete biosynthesis of cannabinoids and their unnatural analogues in yeast[J]. Nature, 2019, 567:123-126.
[98] Liu X, Cheng J, Zhang G, et al. Engineering yeast for the production of breviscapine by genomic analysis and synthetic biology approaches[J]. Nat Commun, 2018, 9:1-10.
[99] Wei W, Wang P, Wei Y, et al. Characterization of Panax ginseng UDP-glycosyltransferases catalyzing protopanaxatriol and biosyntheses of bioactive ginsenosides F1 and Rh1 in metabolically engineered yeasts[J]. Mol Plant, 2015, 8:1412-1424.
[100] Wang P, Wei Y, Fan Y, et al. Production of bioactive ginsenosides Rh2 and Rg3 by metabolically engineered yeasts[J]. Metab Eng, 2015, 29:97-105.
[101] Zhuang Y, Yang G, Chen X, et al. Biosynthesis of plant-derived ginsenoside Rh2 in yeast via repurposing a key promiscuous microbial enzyme[J]. Metab Eng, 2017, 42:25-32.
[102] Wang P, Wei W, Ye W, et al. Synthesizing ginsenoside Rh2 in Saccharomyces cerevisiae cell factory at high-efficiency[J]. Cell Discov, 2019, 5:5.
[103] Wang D, Wang J, Shi Y, et al. Elucidation of the complete biosynthetic pathway of the main triterpene glycosylation products of Panax notoginseng using a synthetic biology platform[J]. Metab Eng, 2020, 61:131-140.
[104] Li J, Mutanda I, Wang K, et al. Chloroplastic metabolic engineering coupled with isoprenoid pool enhancement for committed taxanes biosynthesis in Nicotiana benthamiana[J]. Nat Commun, 2019, 10:4850.
[105] Royer J, Shanklin J, Balch-Kenney N, et al. Rhodoxanthin synthase from honeysuckle; a membrane diiron enzyme catalyzes the multistep conversion of β-carotene to rhodoxanthin[J]. Sci Adv, 2020, 6:eaay9226.
[106] Oyarce P, De Meester B, Fonseca F, et al. Introducing curcumin biosynthesis in Arabidopsis enhances lignocellulosic biomass processing[J]. Nat Plants, 2019, 5:225-237.
[107] Zhang Y, Li Y, Wang Y, et al. Identification and characterization of N9-methyltransferase involved in converting caffeine into non-stimulatory theacrine in tea[J]. Nat Commun, 2020, 11:1473.
[108] Wang Z, Wang S, Xu Z, et al. Highly promiscuous flavonoid 3-O-glycosyltransferase from Scutellaria baicalensis[J]. Org Lett, 2019, 21:2241-2245.
[109] He J, Zhao P, Hu Z, et al. Molecular characterization and structural basis of a promiscuous C-glycosyltransferase from Trollius chinensis[J]. Angew Chem Int Ed, 2019, 58:11513-11520.
[110] He J, Chen K, Hu Z, et al. UGT73F17, a new glycosyltransferase from Glycyrrhiza uralensis, catalyzes the regiospecific glycosylation of pentacyclic triterpenoids[J]. Chem Commun, 2018, 54:8594-8597.
[111] Zhang M, Li F, Li K, et al. Functional characterization and structural basis of an efficient di-C-glycosyltransferase from Glycyrrhiza glabra[J]. J Am Chem Soc, 2020, 142:3506-3512.
[112] Gao L, Su C, Du X, et al. FAD-dependent enzyme-catalysed intermolecular[4+2] cycloaddition in natural product biosynthesis[J]. Nat Chem, 2020, 12:620-628.
[113] Chen R, Gao B, Liu X, et al. Molecular insights into the enzyme promiscuity of an aromatic prenyltransferase[J]. Nat Chem Biol, 2017, 13:226-234.
[114] Zhang B, Wang KB, Wang W, et al. Enzyme-catalysed[6+4] cycloadditions in the biosynthesis of natural products[J]. Nature, 2019, 568:122-126.
[115] Chen D, Chen R, Wang R, et al. Probing the catalytic promiscuity of a regio-and stereospecific C-glycosyltransferase from Mangifera indica[J]. Angew Chem Int Ed, 2015, 54:12678-12682.
[116] Zhou J, Yang L, Wang C, et al. Enhanced performance of the methylerythritol phosphate pathway by manipulation of redox reactions relevant to IspC, IspG, and IspH[J]. J Biotechnol, 2017, 248:1-8.
[117] Sun L, Liu G, Li Y, et al. Metabolic engineering of Saccharomyces cerevisiae for efficient production of endocrocin and emodin[J]. Metab Eng, 2019, 54:212-221.
[118] Zhu M, Wang C, Sun W, et al. Boosting 11-oxo-β-amyrin and glycyrrhetinic acid synthesis in Saccharomyces cerevisiae via pairing novel oxidation and reduction system from legume plants[J]. Metab Eng, 2018, 45:43-50.
[119] Li Q, Fan F, Gao X, et al. Balanced activation of IspG and IspH to eliminate MEP intermediate accumulation and improve isoprenoids production in Escherichia coli[J]. Metab Eng, 2017, 44:13-21.
[120] Qu Y, Easson ML, Froese J, et al. Completion of the seven-step pathway from tabersonine to the anticancer drug precursor vindoline and its assembly in yeast[J]. Proc Natl Acad Sci U S A, 2015, 112:6224-6229.
[121] Brown S, Clastre M, Courdavault V, et al. De novo production of the plant-derived alkaloid strictosidine in yeast[J]. Proc Natl Acad Sci U S A, 2015, 112:3205-3210.
[122] Bai YF, Yin H, Bi HP, et al. De novo biosynthesis of gastrodin in Escherichia coli[J]. Metab Eng, 2016, 35:138-147.
[123] Li J, Tian C, Xia Y, et al. Production of plant-specific flavones baicalein and scutellarein in an engineered E. coli from available phenylalanine and tyrosine[J]. Metab Eng, 2019, 52:124-133.
[124] Whitaker WB, Jones JA, Bennett RK, et al. Engineering the biological conversion of methanol to specialty chemicals in Escherichia coli[J]. Metab Eng, 2017, 39:49-59.
[125] Laverty KU, Stout JM, Sullivan MJ, et al. A physical and genetic map of Cannabis sativa identifies extensive rearrangements at the THC/CBD acid synthase loci[J]. Genome Res, 2019, 29:146-156.
[126] Ma Y, Xu D, Li L, et al. Jasmonate promotes artemisinin biosynthesis by activating the TCP14-ORA complex in Artemisia annua[J]. Sci Adv, 2018, 4:s9357.
[127] Shi R, Hu Z, Lu H, et al. Hierarchical nanostructuring array enhances mid-hybridization for accurate herbal identification via ITS2 DNA barcode[J]. Anal Chem, 2020, 92:2136-2144.
[128] Feng L, Ruhsam M, Wang Y, et al. Using demographic model selection to untangle allopatric divergence and diversification mechanisms in the Rheum palmatum complex in the Eastern Asiatic Region[J]. Mol Ecol, 2020, 29:1791-1805.
[129] Zheng J, Wu M, Wang H, et al. Network pharmacology to unveil the biological basis of health-strengthening herbal medicine in cancer treatment[J]. Cancers, 2018, 10:461.
[130] Guo Y, Bao C, Ma D, et al. Network-based combinatorial CRISPR-Cas9 screens identify synergistic modules in human cells[J]. ACS Synth Biol, 2019, 8:482-490.
[131] Dai Z, Ge G, Feng L, et al. A highly selective ratiometric two-photon fluorescent probe for human cytochrome P4501A[J]. J Am Chem Soc, 2015, 137:14488-14495.
[132] Dai Z, Feng L, Jin Q, et al. A practical strategy to design and develop an isoform-specific fluorescent probe for a target enzyme:CYP1A1 as a case study[J]. Chem Sci, 2017, 8:2795-2803.
[133] Lv X, Ge G, Feng L, et al. An optimized ratiometric fluorescent probe for sensing human UDP-glucuronosyltransferase 1A1 and its biological applications[J]. Biosens Bioelectron, 2015, 72:261-267.
[134] Lv X, Feng L, Ai C, et al. A practical and high-affinity fluorescent probe for uridine diphosphate glucuronosyltransferase ∣A∣:a good surrogate for bilirubin[J]. J Med Chem, 2017, 60:9664-9675.
[135] Zou L, Wang P, Qian X, et al. A highly specific ratiometric two-photon fluorescent probe to detect dipeptidyl peptidase IV in plasma and living systems[J]. Biosens Bioelectron, 2017, 90:283-289.
[136] Jin Q, Feng L, Wang D, et al. A highly selective near-infrared fluorescent probe for carboxylesterase 2 and its bioimaging applications in living cells and animals[J]. Biosens Bioelectron, 2016, 83:193-199.
[137] Jin Q, Feng L, Wang D, et al. A two-photon ratiometric fluorescent probe for imaging carboxylesterase 2 in living cells and tissues[J]. ACS Appl Mater Inter, 2015, 7:28474-28481.
[138] Wang D, Jin Q, Zou L, et al. A bioluminescent sensor for highly selective and sensitive detection of human carboxylesterase 1 in complex biological samples[J]. Chem Commun, 2016, 52:3183-3186.
[139] Tian Z, Ding L, Li K, et al. Rational design of a long-wavelength fluorescent probe for highly selective sensing of carboxylesterase 1 in living systems[J]. Anal Chem, 2019, 91:5638-5645.
[140] Wu J, Cao Y, Feng L, et al. A naturally occurring isoform-specific probe for highly selective and sensitive detection of human cytochrome P4503A5[J]. J Med Chem, 2017, 60:3804-3813.
[141] Ding L, Tian Z, Hou J, et al. Sensing carboxylesterase 1 in living systems by a practical and isoform-specific fluorescent probe[J]. Chin Chem Lett, 2019, 30:558-562.
[142] Wang X, Lv X, Li S, et al. Identification and characterization of naturally occurring inhibitors against UDP-glucuronosyltransferase 1A1 in Fructus Psoraleae (Bu-gu-zhi)[J]. Toxicol Appl Pharm, 2015, 289:70-78.
[143] Liu Y, Li S, Hou J, et al. Identification and characterization of naturally occurring inhibitors against human carboxylesterase 2 in white mulberry root-bark[J]. Fitoterapia, 2016, 115:57-63.
[144] Liu J, Cai Q, Wang W, et al. Ginsenoside Rh2 pretreatment and withdrawal reactivated the pentose phosphate pathway to ameliorate intracellular redox disturbance and promoted intratumoral penetration of adriamycin[J]. Redox Biol, 2020, 32:101452.
[145] Zhou F, Hao G, Zhang J, et al. Protective effect of 23-hydroxy-betulinic acid on doxorubicin-induced cardiotoxicity:a correlation with the inhibition of carbonyl reductase-mediated metabolism[J]. Brit J Pharmacol, 2015, 172:5690-5703.
[146] Wang X, Ren J, Zhang A, et al. Novel applications of mass spectrometry-based metabolomics in herbal medicines and its active ingredients:current evidence[J]. Mass Spectrom Rev, 2019, 38:380-402.
[147] Xu D, Lv Y, Wang J, et al. Deciphering the mechanism of Huang-Lian-Jie-Du-Decoction on the treatment of sepsis by formula decomposition and metabolomics:enhancement of cholinergic pathways and inhibition of HMGB-1/TLR4/NF-κB signaling[J]. Pharmacol Res, 2017, 121:94-113.
[148] Yang M, Zhou Z, Guo D. A strategy for fast screening and identification of sulfur derivatives in medicinal Pueraria species based on the fine isotopic pattern filtering method using ultra-high-resolution mass spectrometry[J]. Anal Chim Acta, 2015, 894:44-53.
[149] Li C, Rao T, Chen X, et al. HLA-B*35:01 allele is a potential biomarker for predicting polygonum multiflorum-induced liver injury in humans[J]. Hepatology, 2019, 70:346-357.
[150] Lu Z, Luo Q, Zhao L, et al. The mutational features of aristolochic acid-induced mouse and human liver cancers[J]. Hepatology, 2020, 71:929-942.
[151] Zhang Y, ShiYang X, Zhang Y, et al. Exposure to aristolochic acid I compromises the maturational competency of porcine oocytes via oxidative stress-induced DNA damage[J]. Aging, 2019, 11:2241-2252.
[152] Abba M, Patil N, Leupold JH, et al. Prevention of carcinogenesis and metastasis by artemisinin-type drugs[J]. Cancer Lett, 2018, 429:11-18.
[153] Wong YK, Xu C, Kalesh KA, et al. Artemisinin as an anticancer drug:recent advances in target profiling and mechanisms of action[J]. Med Res Rev, 2017, 37:1492-1517.
[154] Li X, Zhou Y, Liu Y, et al. Preclinical efficacy and safety assessment of artemisinin-chemotherapeutic agent conjugates for ovarian cancer[J]. Ebiomedicine, 2016, 14:44-54.
[155] Li Z, Shi X, Liu J, et al. Artesunate prevents type 1 diabetes in NOD mice mainly by inducing protective IL-4-producing T cells and regulatory T cells[J]. FASEB J, 2019, 33:8241-8248.
[156] Wang X, Sun G, Feng T, et al. Sodium oligomannate therapeutically remodels gut microbiota and suppresses gut bacterial amino acids-shaped neuroinflammation to inhibit Alzheimer's disease progression[J]. Cell Res, 2019, 29:787-803.
相关文献:
1.伍超, 韦佳慧, 陈涵, 阮陶仁, 李卓恒, 张继芬, 徐晓玉.补肾益精中药治疗肾精亏虚证相关疾病的生物学物质基础及作用机制的预测与验证[J]. 药学学报, 2020,55(3): 463-472
2.侯旭东, 胡情, 马丽娟, 于浩楠, 葛广波, 侯洁.源于中药的胰脂肪酶抑制剂研究进展[J]. 药学学报, 2020,55(7): 1478-1493
3.贾晓斌, 杨冰, 封亮, 石心红, 汪豪, 刘利根.中药药剂学研究前沿:组分制剂技术基础与关键科学问题[J]. 药学学报, 2018,53(12): 1943-1953
4.李奕婧, 李晓琳, 韩家忠, 徐玉文.HPLC-DAD-MS/MS检测止咳平喘类中药制剂中非法添加的12种化学药品[J]. 药学学报, 2017,52(6): 959-963
5.徐晶晶, 尚明英, 徐风, 李耀利, 刘广学, 王璇, 蔡少青.临床常用中西药血药浓度的比较与分析[J]. 药学学报, 2017,52(8): 1222-1234
6.庞晓丛, 王喆, 方坚松, 连雯雯, 赵嬴, 康德, 刘艾林, 杜冠华.治疗阿尔茨海默病的中药有效成分的网络药理学研究[J]. 药学学报, 2016,51(5): 725-731
7.陈修平, 陆金健, 郭佳杰, 鲍娇琳, 徐文珊, 丁 倩, 王一涛.基于天然产物的药物研发对创新中药研究的启示 —TTD收录天然药物分析[J]. 药学学报, 2012,47(11): 1423-1427
8.岳鹏飞 郑 琴 朱根华 伍振峰 胡鹏翼 杨 明.基于物质粗糙集理论的中药复方缓释制剂“总量” 释放动力学评价模式[J]. 药学学报, 2010,45(11): 1354-1360
9.黄 雪 袁海龙 肖小河 张甜甜.基于生物热动力学表征的中药固体制剂体外溶出度分析方法初步研究[J]. 药学学报, 2010,45(3): 338-342
10.尚 海 潘 莉 杨 澍 陈 虹 程卯生.微管蛋白抑制剂的研究进展[J]. 药学学报, 2010,45(9): 1078-1088
11.凌昳;张继稳;陈立兵;林梦;葛卫红;顾景凯.应用中药物质组释放动力学理论研究银翘解毒丸的缓释动力学及其同步性[J]. 药学学报, 2008,43(11): 1140-1146
12.高维娜;李云;张瑞;高慧;徐为人;李爱秀;杜奇石;张欣;魏冬青.基于中药数据库的HIV抑制剂的筛选[J]. 药学学报, 2006,41(3): 241-246
13.王琰;王慕邹.莪术的质量研究[J]. 药学学报, 2001,36(11): 449-853