药学学报, 2020, 55(12): 2777-2784
引用本文:
李昭君, 陈晓光, 张森. 肠道菌群-代谢物网络同慢性肾病发生发展的关系及其关联机制研究进展[J]. 药学学报, 2020, 55(12): 2777-2784.
LI Zhao-jun, CHEN Xiao-guang, ZHANG Sen. The role of the intestinal microflora dysbiosis in chronic kidney disease[J]. Acta Pharmaceutica Sinica, 2020, 55(12): 2777-2784.

肠道菌群-代谢物网络同慢性肾病发生发展的关系及其关联机制研究进展
李昭君, 陈晓光, 张森
中国医学科学院、北京协和医学院药物研究所, 北京 100050
摘要:
近年来,宿主与肠道微生物的相互作用成为人们关注的焦点,这种复杂的相互作用对维持正常生理活动是必要的。但菌群失调也可能导致多种疾病,越来越多的证据表明慢性肾病(chronic kidney disease,CKD)患者肠道中的微生物组与宿主的病理生理状态相关。“肠-肾轴”理论的提出很好地解释了肠道菌群与慢性肾病之间的双向交流,一方面肾脏功能受损导致肠道菌群失调;另一方面改变的肠道菌群通过损伤肠黏膜屏障,使有害菌透过肠屏障入血,诱发慢性炎症,从而加速肾脏损伤。另外失调的肠道菌群代谢产物中肾毒性代谢物的增加也是“肠-肾轴”加重肾病的机制之一,其中对甲酚硫酸盐、硫酸吲哚酚和氧化三甲胺这3类微生物代谢物是研究最为广泛的肾毒性代谢物,它们的肾脏毒性已在基础和临床研究中得到广泛证实。目前研究表明,肠道菌群-代谢物网络同慢性肾病发生发展密切相关,通过干预肠道菌群有可能为慢性肾病的预防和治疗提供一条全新途径。
关键词:    肠道菌群      慢性肾病      肠道菌代谢物      肠肾轴     
The role of the intestinal microflora dysbiosis in chronic kidney disease
LI Zhao-jun, CHEN Xiao-guang, ZHANG Sen
Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
Abstract:
In recent years the interaction between host and gut microbiota has attracted increasing attention. However, intestinal flora dysbiosis may lead to many diseases, and there is increasing evidence that the intestinal microbiota in patients with chronic kidney disease (CKD) is associated with the pathophysiological status of the host. "Gut-kidney axis" provides a better explanation of the two-way communication between intestinal flora and CKD. Impaired kidney function leads to dysbiosis of intestinal flora and an altered intestinal flora can damage the intestinal mucosal barrier and facilitate the entry into the bloodstream of harmful bacteria, which can induce chronic inflammation and thus accelerate renal injury. In addition, the accumulation of nephrotoxic metabolites from an altered intestinal flora can aggravate CKD in the "gut-kidney axis". Among them, p-cresol sulfate, indoxyl sulfate and trimethylamine oxide are the most widely studied metabolites of nephrotoxicity, and their renal toxicity has been widely confirmed in basic research and clinical studies. Current studies show that the intestinal microbiota-metabolite network is closely related to the occurrence and development of chronic kidney disease. Thus, intervention in the intestinal microbiota may provide a new approach to the prevention and treatment of chronic kidney disease.
Key words:    gut microbiota    chronic kidney disease    metabolite    gut-kidney axis   
收稿日期: 2020-03-30
DOI: 10.16438/j.0513-4870.2020-0434
基金项目: 中国医学科学院医学与健康科技创新工程(2016-I2M-3-011).
通讯作者: 张森,Tel:86-10-63165207,E-mail:zhangs@imm.ac.cn;陈晓光,E-mail:chxg@imm.ac.cn
Email: zhangs@imm.ac.cn;chxg@imm.ac.cn
相关功能
PDF(786KB) Free
打印本文
0
作者相关文章
李昭君  在本刊中的所有文章
陈晓光  在本刊中的所有文章
张森  在本刊中的所有文章

参考文献:
[1] Ley RE, Peterson DA, Gordon JI. Ecological and evolutionary forces shaping microbial diversity in the human intestine[J]. Cell, 2006, 124:837-848.
[2] Bourlioux P, Koletzko B, Guarner F, et al. The intestine and its microflora are partners for the protection of the host:report on the Danone Symposium "The Intelligent Intestine," held in Paris, June 14, 2002[J]. Am J Clin Nutr, 2003, 78:675-683.
[3] Backhed F, Ley RE, Sonnenburg JL, et al. Host-bacterial mutualism in the human intestine[J]. Science, 2005, 307:1915-1920.
[4] Hooper LV, Midtvedt T, Gordon JI. How host-microbial interactions shape the nutrient environment of the mammalian intestine[J]. Annu Rev Nutr, 2002, 22:283-307.
[5] Metges CC. Contribution of microbial amino acids to amino acid homeostasis of the host[J]. J Nutr, 2000, 130:1857s-1864s.
[6] Hill MJ. Intestinal flora and endogenous vitamin synthesis[J]. Eur J Cancer Prev, 1997, 6 Suppl 1:S43-S45.
[7] Hylemon PB, Harder J. Biotransformation of monoterpenes, bile acids, and other isoprenoids in anaerobic ecosystems[J]. FEMS Microbiol Rev, 1998, 22:475-488.
[8] Braun-Fahrlander C, Riedler J, Herz U, et al. Environmental exposure to endotoxin and its relation to asthma in school-age children[J]. N Engl J Med, 2002, 347:869-877.
[9] Bravo JA, Forsythe P, Chew MV, et al. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve[J]. Proc Natl Acad Sci U S A, 2011, 108:16050-16055.
[10] Marchesi JR, Adams DH, Fava F, et al. The gut microbiota and host health:a new clinical frontier[J]. Gut, 2016, 65:330-339.
[11] Ley RE, Turnbaugh PJ, Klein S, et al. Microbial ecology:human gut microbes associated with obesity[J]. Nature, 2006, 444:1022-1023.
[12] Qin J, Li Y, Cai Z, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes[J]. Nature, 2012, 490:55-60.
[13] Frank DN, St Amand AL, Feldman RA, et al. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases[J]. Proc Natl Acad Sci U S A, 2007, 104:13780-13785.
[14] Wang Z, Klipfell E, Bennett BJ, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease[J]. Nature, 2011, 472:57-63.
[15] Zhang L, Wang F, Wang L, et al. Prevalence of chronic kidney disease in China:a cross-sectional survey[J]. Lancet, 2012, 379:815-822.
[16] Levin A, Tonelli M, Bonventre J, et al. Global kidney health 2017 and beyond:a roadmap for closing gaps in care, research, and policy[J]. Lancet, 2017, 390:1888-1917.
[17] Werder AA, Amos MA, Nielsen AH, et al. Comparative effects of germfree and ambient environments on the development of cystic kidney disease in CFWwd mice[J]. J Lab Clin Med, 1984, 103:399-407.
[18] Hallman TM, Peng M, Meade R, et al. The mitochondrial and kidney disease phenotypes of kd/kd mice under germfree conditions[J]. J Autoimmun, 2006, 26:1-6.
[19] Kikuchi M, Ueno M, Itoh Y, et al. Uremic toxin-producing gut microbiota in rats with chronic kidney disease[J]. Nephron, 2017, 135:51-60.
[20] Yoshifuji A, Wakino S, Irie J, et al. Gut Lactobacillus protects against the progression of renal damage by modulating the gut environment in rats[J]. Nephrol Dial Transplant, 2016, 31:401-412.
[21] Feng YL, Cao G, Chen DQ, et al. Microbiome-metabolomics reveals gut microbiota associated with glycine-conjugated metabolites and polyamine metabolism in chronic kidney disease[J]. Cell Mol Life Sci, 2019, 76:4961-4978.
[22] Sampaio-Maia B, Simões-Silva L, Pestana M, et al. The role of the gut microbiome on chronic kidney disease[J]. Adv Appl Microbiol, 2016, 96:65-94.
[23] Jiang S, Xie S, Lv D, et al. Alteration of the gut microbiota in Chinese population with chronic kidney disease[J]. Sci Rep, 2017, 7:2870.
[24] Hida M, Aiba Y, Sawamura S, et al. Inhibition of the accumulation of uremic toxins in the blood and their precursors in the feces after oral administration of Lebenin, a lactic acid bacteria preparation, to uremic patients undergoing hemodialysis[J]. Nephron, 1996, 74:349-355.
[25] Vaziri ND, Wong J, Pahl M, et al. Chronic kidney disease alters intestinal microbial flora[J]. Kidney Int, 2013, 83:308-315.
[26] Wang IK, Lai HC, Yu CJ, et al. Real-time PCR analysis of the intestinal microbiotas in peritoneal dialysis patients[J]. Appl Environ Microbiol, 2012, 78:1107-1112.
[27] Crespo-Salgado J, Vehaskari VM, Stewart T, et al. Intestinal microbiota in pediatric patients with end stage renal disease:a Midwest Pediatric Nephrology Consortium study[J]. Microbiome, 2016, 4:50.
[28] Szeto CC, Chow VC, Chow KM, et al. Enterobacteriaceae peritonitis complicating peritoneal dialysis:a review of 210 consecutive cases[J]. Kidney Int, 2006, 69:1245-1252.
[29] Angelis MD, Montemurno E, Piccolo M, et al. Microbiota and metabolome associated with immunoglobulin A nephropathy (IgAN)[J]. PLoS One, 2014, 9:e99006.
[30] Han L, Fang X, He Y, et al. ISN Forefronts Symposium 2015:IgA nephropathy, the gut microbiota, and gut-kidney crosstalk[J]. Kidney Int Rep, 2016, 1:189-196.
[31] Wu IW, Lin CY, Chang LC, et al. Gut microbiota as diagnostic tools for mirroring disease progression and circulating nephrotoxin levels in chronic kidney disease:discovery and validation study[J]. Int J Biol Sci, 2020, 16:420-434.
[32] Andrianova NV, Popkov VA, Klimenko NS, et al. Microbiome-metabolome signature of acute kidney injury[J]. Metabolites, 2020, 10:142.
[33] Evenepoel P, Poesen R, Meijers B. The gut-kidney axis[J]. Pediatr Nephrol, 2017, 32:2005-2014.
[34] Yang T, Richards EM, Pepine CJ, et al. The gut microbiota and the brain-gut-kidney axis in hypertension and chronic kidney disease[J]. Nat Rev Nephrol, 2018, 14:442-456.
[35] Pugin J, Heumann ID, Tomasz A, et al. CD14 is a pattern recognition receptor[J]. Immunity, 1994, 1:509-516.
[36] Feroze U, Kalantar-Zadeh K, Sterling KA, et al. Examining associations of circulating endotoxin with nutritional status, inflammation, and mortality in hemodialysis patients[J]. J Ren Nutr, 2012, 22:317-326.
[37] Leemans JC, Kors L, Anders HJ, et al. Pattern recognition receptors and the inflammasome in kidney disease[J]. Nat Rev Nephrol, 2014, 10:398-414.
[38] Braga TT, Correa-Costa M, Guise YF, et al. MyD88 signaling pathway is involved in renal fibrosis by favoring a TH2 immune response and activating alternative M2 macrophages[J]. Mol Med, 2012, 18:1231-1239.
[39] Meijers BK, Bammens B, Verbeke K, et al. A review of albumin binding in CKD[J]. Am J Kidney Dis, 2008, 51:839-850.
[40] Bammens B, Evenepoel P, Keuleers H, et al. Free serum concentrations of the protein-bound retention solute p-cresol predict mortality in hemodialysis patients[J]. Kidney Int, 2006, 69:1081-1087.
[41] Maciel RA, Rempel LC, Bosquetti B, et al. p-Cresol but not p-cresyl sulfate stimulate MCP-1 production via NF-κB p65 in human vascular smooth muscle cells[J]. J Bras Nefrol, 2016, 38:153-160.
[42] Six I, Gross P, Remond MC, et al. Deleterious vascular effects of indoxyl sulfate and reversal by oral adsorbent AST-120[J]. Atherosclerosis, 2015, 243:248-256.
[43] Niwa T, Shimizu H. Indoxyl sulfate induces nephrovascular senescence[J]. J Ren Nutr, 2012, 22:102-106.
[44] Jing YJ, Ni JW, Ding FH, et al. p-Cresyl sulfate is associated with carotid arteriosclerosis in hemodialysis patients and promotes atherogenesis in apoE-/- mice[J]. Kidney Int, 2016, 89:439-449.
[45] Sun CY, Hsu HH, Wu MS. p-Cresol sulfate and indoxyl sulfate induce similar cellular inflammatory gene expressions in cultured proximal renal tubular cells[J]. Nephrol Dial Transplant, 2013, 28:70-78.
[46] Amabile N, Guerin AP, Leroyer A, et al. Circulating endothelial microparticles are associated with vascular dysfunction in patients with end-stage renal failure[J]. J Am Soc Nephrol, 2005, 16:3381-3388.
[47] Shivanna S, Kolandaivelu K, Shashar M, et al. The aryl hydrocarbon receptor is a critical regulator of tissue factor stability and an antithrombotic target in uremia[J]. J Am Soc Nephrol, 2016, 27:189-201.
[48] Motojima M, Hosokawa A, Yamato H, et al. Uremic toxins of organic anions up-regulate PAI-1 expression by induction of NF-κB and free radical in proximal tubular cells[J]. Kidney Int, 2003, 63:1671-1680.
[49] Satoh M, Hayashi H, Watanabe M, et al. Uremic toxins overload accelerates renal damage in a rat model of chronic renal failure[J]. Nephron Exp Nephrol, 2003, 95:e111-e118.
[50] Miyazaki T, Ise M, Seo H, et al. Indoxyl sulfate increases the gene expressions of TGF-beta 1, TIMP-1 and pro-alpha 1(I) collagen in uremic rat kidneys[J]. Kidney Int Suppl, 1997, 62:S15-S22.
[51] Dou L, Cerini C, Brunet P, et al. p-Cresol, a uremic toxin, decreases endothelial cell response to inflammatory cytokines[J]. Kidney Int, 2002, 62:1999-2009.
[52] Watanabe H, Miyamoto Y, Honda D, et al. p-Cresyl sulfate causes renal tubular cell damage by inducing oxidative stress by activation of NADPH oxidase[J]. Kidney Int, 2013, 83:582-592.
[53] Tang WH, Wang Z, Kennedy DJ, et al. Gut microbiota-dependent trimethylamine N-oxide (TMAO) pathway contributes to both development of renal insufficiency and mortality risk in chronic kidney disease[J]. Circ Res, 2015, 116:448-455.
[54] Zhu W, Gregory JC, Org E, et al. Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk[J]. Cell, 2016, 165:111-124.
[55] Walkin L, Herrick SE, Summers A, et al. The role of mouse strain differences in the susceptibility to fibrosis:a systematic review[J]. Fibrogenesis Tissue Repair, 2013, 6:18.
[56] Runyan CE, Schnaper HW, Poncelet AC. Smad3 and PKCdelta mediate TGF-beta1-induced collagen I expression in human mesangial cells[J]. Am J Physiol Renal Physiol, 2003, 285:F413-F422.
[57] Manor O, Zubair N, Conomos MP, et al. A multi-omic association study of trimethylamine N-oxide[J]. Cell Rep, 2018, 24:935-946.
[58] Thorburn AN, Macia L, Mackay CR. Diet, metabolites, and "western-lifestyle" inflammatory diseases[J]. Immunity, 2014, 40:833-842.
[59] Donohoe DR, Collins LB, Wali A, et al. The Warburg effect dictates the mechanism of butyrate-mediated histone acetylation and cell proliferation[J]. Mol Cell, 2012, 48:612-626.
[60] Raqib R, Sarker P, Bergman P, et al. Improved outcome in shigellosis associated with butyrate induction of an endogenous peptide antibiotic[J]. Proc Natl Acad Sci U S A, 2006, 103:9178-9183.
[61] Furusawa Y, Obata Y, Fukuda S, et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells[J]. Nature, 2013, 504:446-450.
[62] Park J, Kim M, Kang SG, et al. Short-chain fatty acids induce both effector and regulatory T cells by suppression of histone deacetylases and regulation of the mTOR-S6K pathway[J]. Mucosal Immunol, 2015, 8:80-93.
[63] McDermott A, Huffnagle G. The microbiome and regulation of mucosal immunity[J]. Immunology, 2014, 142:24-31.
[64] Kelly CJ, Zheng L, Campbell EL, et al. Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function[J]. Cell Host Microbe, 2015, 17:662-671.
[65] Wong J, Piceno YM, DeSantis TZ, et al. Expansion of urease- and uricase-containing, indole- and p-cresol-forming and contraction of short-chain fatty acid-producing intestinal microbiota in ESRD[J]. Am J Nephrol, 2014, 39:230-237.
[66] Krishnamurthy VM, Wei G, Baird BC, et al. High dietary fiber intake is associated with decreased inflammation and all-cause mortality in patients with chronic kidney disease[J]. Kidney Int, 2012, 81:300-306.
[67] Vaziri ND, Liu SM, Lau WL, et al. High amylose resistant starch diet ameliorates oxidative stress, inflammation, and progression of chronic kidney disease[J]. PLoS One, 2014, 9:e114881.
[68] Andrade-Oliveira V, Amano MT, Correa-Costa M, et al. Gut bacteria products prevent AKI induced by ischemia-reperfusion[J]. J Am Soc Nephrol, 2015, 26:1877-1888.
[69] Wang L, Zhu Q, Lu A, et al. Sodium butyrate suppresses angiotensin Ⅱ-induced hypertension by inhibition of renal (pro) renin receptor and intrarenal renin-angiotensin system[J]. J Hypertens, 2017, 35:1899-1908.
[70] Marques FZ, Nelson E, Chu PY, et al. High-fiber diet and acetate supplementation change the gut microbiota and prevent the development of hypertension and heart failure in hypertensive mice[J]. Circulation, 2017, 135:964-977.
[71] Felizardo RJF, de Almeida DC, Pereira RL, et al. Gut microbial metabolite butyrate protects against proteinuric kidney disease through epigenetic- and GPR109a-mediated mechanisms[J]. FASEB J, 2019, 33:11894-11908.
相关文献:
1.陆静波, 王颖异, 张森, 李建萍, 李成曦, 徐雪君, 彭印, 陈晨凯, 郭建明, 段金廒.黄葵四物方调控肠道菌群中代谢通路干预尿毒素合成的作用机制研究[J]. 药学学报, 2020,55(6): 1229-1236