药学学报, 2020, 55(12): 2793-2799
刘楠, 李纳, 马晓华, 朱琳, 时程程. lncRNA与自身免疫性疾病CD4+ T淋巴细胞亚群分化的关系研究进展[J]. 药学学报, 2020, 55(12): 2793-2799.
LIU Nan, LI Na, MA Xiao-hua, ZHU Lin, SHI Cheng-cheng. Relationship between lncRNA and the differentiation of CD4+ T lymphocyte subsets in autoimmune diseases[J]. Acta Pharmaceutica Sinica, 2020, 55(12): 2793-2799.

lncRNA与自身免疫性疾病CD4+ T淋巴细胞亚群分化的关系研究进展
刘楠, 李纳, 马晓华, 朱琳, 时程程
郑州大学第一附属医院药学部, 河南 郑州 450000
长链非编码RNA(lncRNA)具有广泛的生物学功能,在表观遗传、细胞周期和细胞分化等生命活动中均有调控作用,且能影响免疫细胞的发育分化与免疫系统稳态的维持。CD4+ T细胞亚群是具有不同功能的异质性细胞,能促进T细胞和B细胞等免疫细胞的增殖与分化,协调免疫细胞之间的相关作用。自身免疫性疾病(AID)是一种自身抗原免疫反应引起的慢性炎症性疾病,在疾病的发生及活动期均有lncRNA与CD4+ T细胞亚群的参与。本文将针对lncRNA与AID CD4+ T细胞亚群分化的关系进行综述。
关键词:    长链非编码RNA      CD4+ T细胞亚群      自身免疫性疾病      系统性红斑狼疮      类风湿性关节炎      银屑病     
Relationship between lncRNA and the differentiation of CD4+ T lymphocyte subsets in autoimmune diseases
LIU Nan, LI Na, MA Xiao-hua, ZHU Lin, SHI Cheng-cheng
Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
Long non-coding RNA (lncRNA) has a wide range of biological functions in epigenetic, cell cycle, cell differentiation and other life activities, and that affect the development and differentiation of immune cells and the maintenance of homeostasis in the immune system. CD4+ T cell subsets are heterogeneous cells with different functions, including promoting the proliferation and differentiation of T cells, B cells and other immune cells, and coordinating related functions between immune cells. Autoimmune disease (AID) is a chronic inflammatory disease caused by an autoantigen immune reaction. lncRNA and CD4+ T cell subsets are involved in the occurrence and progression of the disease. This article reviews the relationship between lncRNA and the differentiation of AID CD4+ T cell subsets.
Key words:    long non-coding RNA    CD4+ T cell subset    autoimmune disease    systemic lupus erythematosus    rheumatoid arthritis    psoriasis   
收稿日期: 2020-03-06
DOI: 10.16438/j.0513-4870.2020-0261
基金项目: 国家自然科学基金面上项目(31570357);河南省高等学校重点科研项目计划(17A310011).
通讯作者: 时程程,Tel:86-371-66913047,E-mail:530693421@qq.com
Email: 530693421@qq.com
PDF(761KB) Free
刘楠  在本刊中的所有文章
李纳  在本刊中的所有文章
马晓华  在本刊中的所有文章
朱琳  在本刊中的所有文章
时程程  在本刊中的所有文章

[1] Song H, Fang F, Valdimarsdóttir UA. Stress-related disorders and autoimmune disease-reply[J]. JAMA, 2018, 320:1817-1818.
[2] Huang YT, Zhang M. The role of IL-2 and IL-2 receptor in autoimmune diseases and organ transplant[J]. J Immunol (免疫学杂志), 2017, 33:911-915.
[3] Zhang F. Investigation of Long Noncoding RNAs in Multiple Sclerosis (长链非编码RNA在多发性硬化中的研究)[D]. Tianjin:Tianjin Medical University, 2018.
[4] Wu GC, Pan HFE, Leng RX, et al. Emerging role of long noncoding RNAs in autoimmune diseases[J]. Autoimmun Rve, 2015, 14:798-805.
[5] Luo H, Guo QQ, Lu AP, et al. Dynamic changes of CD4+ T cells in spleen and CNS of experimentally allergic encephalomyelitis model mice[J]. Prog Vet Med (动物医学进展), 2018, 39:37-41.
[6] Zander R, Schauder D, Xin G, et al. CD4+ T cell help is required for the formation of a cytolytic CD8+ T cell subset that protects against chronic infection and cancer[J]. Immunity, 2019, 51:1028-1042.
[7] Mao XL, Xiong AL, Lu ZX. Detection of autoantibodies against bFGF in sera of patients with autoimmune diseases and clinical analysis of their diagnostic value[J]. Curr Immunol (现代免疫学), 2019, 39:222-225.
[8] Yang MM, Ma H, Zhou L, et al. 166 cases of clinical and pathological characteristics analysis of autoimmune liver disease[J]. Chin J Inter Med (中华内科杂志), 2013, 52:412-414.
[9] Shafiee M, Aleyasin SA, Vasei M, et al. Down-regulatory effects of miR-211 on long non-coding RNA SOX2OT and SOX2 genes in esophageal squamous cell carcinoma[J]. Cell J, 2016, 17:593-600.
[10] Lucafò M, Di Silvestre A, Romano M, et al. Role of the long non-coding RNA growth arrest-specific 5 in glucocorticoid response in children with inflammatory bowel disease[J]. Basic Clin Pharmacol Toxicol, 2018, 122:87-93.
[11] Kirk JM, Kim SO, Inoue K, et al. Functional classification of long non-coding RNAs by k-mer content[J]. Nat Genet, 2018, 50:1474-1482.
[12] Hon CC, Ramilowski JA, Harshbarger J, et al. An atlas of human long non-coding RNAs with accurate 5' ends[J]. Nature, 2017, 543:199-204.
[13] Wu WZ, Wang KJ, Wang JW. Review on correlation between long non-coding RNAs and cell differentiation[J]. J Oral Sci Res (口腔医学研究), 2017, 33:110-113.
[14] Munschauer M, Nguyen CT, Sirokman K, et al. The NORAD lncRNA assembles a topoisomerase complex critical for genome stability[J]. Nature, 2018, 561:132-136.
[15] Kuo CC, Hänzelmann S, Sentürk Cetin N, et al. Detection of RNA-DNA binding sites in long noncoding RNAs[J]. Nucleic Acids Res, 2019, 47:e32.
[16] Li Y, Syed J, Sugiyama H. RNA-DNA triplex formation by long noncoding RNAs[J]. Cell Chem Biol, 2016, 23:1325-1333.
[17] Luo Z, Li Y, Liu X, et al. Systems biology of myasthenia gravis, integration of aberrant lncRNA and mRNA expression changes[J]. BMC Med Genomics, 2015, 8:13-15.
[18] Lee N, Moss W, Yario T, et al. EBV noncoding RNA binds nascent RNA to drive host PAX5 to viral DNA[J]. Cell, 2015, 160:607-618.
[19] Mao Y, Liu R, Zhou H, et al. Transcriptome analysis of miRNA-lncRNA-mRNA interactions in the malignant transformation process of gastric cancer initiation[J]. Cancer Gene Ther, 2017, 24:267-275.
[20] Zheng J, Liu X, Wang P, et al. CRNDE promotes malignant progression of glioma by attenuating miR-384/PIWIL4/STAT3 axis[J]. Mol Ther, 2016, 24:1199-1215.
[21] Wu J, Yu LL, Wang XM, et al. Expression and clinical significance of plasma MALAT1 in patients with breast cancer[J]. Chin J Lab Med (中华检验医学杂志), 2018, 41:92-96.
[22] Aune TM, Crooke PS 3rd, Patrick AE, et al. Expression of long non-coding RNAs in autoimmunity and linkage to enhancer function and autoimmune disease risk genetic variants[J]. J Autoimmun, 2017, 81:99-109.
[23] Morchikh M, Cribier A, Raffel R, et al. HEXIM1 and NEAT1 long non-coding RNA form a multi-subunit complex that regulates DNA-mediated innate immune response[J]. Mol Cell, 2017, 67:387-399.
[24] Joslyn RC, Forero A, Green R, et al. Long noncoding RNA signatures induced by toll-like receptor 7 and type I interferon signaling in activated human plasmacytoid dendritic cells[J]. J Interferon Cytokine Res, 2018, 38:388-405.
[25] Gu ZW, Wang YX, Cao ZW. Neutralization of interleukin-9 ameliorates symptoms of allergic rhinitis by reducing Th2, Th9, and Th17 responses and increasing the Treg response in a murine model[J]. Oncotarget, 2017, 8:14314-14324.
[26] Wang J, Qi Y, Niu X, et al. Dietary naringenin supplementation attenuates experimental autoimmune encephalomyelitis by modulating autoimmune inflammatory responses in mice[J]. J Nutr Biochem, 2018, 54:130-139.
[27] Guimarães PM, Scavuzzi BM, Stadtlober NP, et al. Cytokines in systemic lupus erythematosus:far beyond Th1/Th2 dualism lupus:cytokine profiles[J]. Immunol Cell Biol, 2017, 95:824-831.
[28] Chen Y. The Study of Expression and Function of T Follicular Helper (Tfh) Cells and Its Subsets in IgG4-related Disease (IgG4-RD) (滤泡辅助性T细胞及其亚型在IgG4相关性疾病中的研究)[D]. Beijing:Peking Union Medical College Hospital Chinese Academy of Medical Sciences, 2017.
[29] Bhattacharjee R, De D, Handa S, et al. Assessment of the effects of rituximab monotherapy on different subsets of circulating T-regulatory cells and clinical disease severity in severe pemphigus vulgaris[J]. Dermatology, 2016, 232:572-577.
[30] Yuan SZ, Xu YP, Sui XL, et al. Changes of CD4+CD25+ regulatory T cells and related regulatory factors in acute renal allograft rejection in rats[J]. Chin J Nephrol (中华肾脏病杂志), 2019, 35:295-301.
[31] Ding XJ, Wang YQ, Liu Y. Detection and clinical significance of Th17 cells and Treg cells in peripheral blood of psoriasis patients[J]. J North Sichuan Med Coll (川北医学院学报), 2019, 34:341-343.
[32] Xu H, Wu LL, Hong XL. Significance of Th17/Treg cell balance in peripheral blood of patients with rheumatoid arthritis[J]. Chin J Health Lab Tec (中国卫生检验杂志), 2017, 29:3444-3445.
[33] Guo HJ, Ye X, Gu HH, et al. Th9 cells in peripheral blood of adult patients with primary immune thrombocytopenia and its clinical significance[J]. Acad J Second Military Med Univ (第二军医大学学报), 2015, 36:155-160.
[34] Medrano-Campillo P, Sarmiento-Soto H, Álvarez-Sánchez N, et al. Evaluation of the immunomodulatory effect of melatonin on the T-cell response in peripheral blood from systemic lupus erythematosus patients[J]. J Pineal Res, 2015, 58:219-226.
[35] Wang Y, Zhang DW, Huo J, et al. Effects of chemerin/chemR23 axis on Th9/Treg in patients with psoriasis[J]. J Central South Univ (Med Sci) (中南大学学报(医学版)), 2019, 44:34-39.
[36] Wang B, Liang S, Li Y, et al. The role of follicular helper T cells and Th9 cells in rheumatoid arthritis of ICOS knockout mice[J]. Int J Immunol (国际免疫学杂志), 2018, 41:509-513.
[37] Geginat J, Paroni M, Kastirr I, et al. Reverse plasticity:TGF-β and IL-6 induce Th1-to-Th17-cell transdifferentiation in the gut[J]. Eur J Immunol, 2016, 46:2306-2310.
[38] Xu L, Yu Y, Sang R, et al. Inonotus obliquus polysaccharide protects against adverse pregnancy caused by Toxoplasma gondii infection through regulating Th17/Treg balance via TLR4/NF-κB pathway[J]. Int J Biol Macromol, 2020, 146:832-840.
[39] van Langelaar J, van der Vuurst de Vries RM, Janssen M, et al. T helper 17.1 cells associate with multiple sclerosis disease activity:perspectives for early intervention[J]. Brain, 2018, 141:1334-1349.
[40] Hirota K, Hashimoto M, Ito Y, et al. Autoimmune Th17 cells induced synovial stromal and innate lymphoid cell secretion of the cytokine GM-CSF to initiate and augment autoimmune arthritis[J]. Immunity, 2018, 48:1220-1232.
[41] An N, Chen Y, Wang C, et al. Chloroquine autophagic inhibition rebalances Th17/Treg-mediated immunity and ameliorates systemic lupus erythematosus[J]. Cell Physiol Biochem, 2017, 44:412-422.
[42] Tang XX, Li T, Chen XL, et al. The mechanism of T follicular helper subsets abnormality in children with Henoch-Sch(o)nlein purpura[J]. J Immunol (免疫学杂志), 2018, 34:120-127.
[43] Liang YC, Yao Y, Zhang RJ, et al. Role of circulating T follicular helper subsets and T follicular helper effector memory cells in systemic lupus erythematosus[J]. Natl Med J China (中华医学杂志), 2019, 99:164-168.
[44] Wang N, Hu ZF, Li AL, et al. Expression of Tfh cells and their related immune molecules in collagen-induced arthritis mice[J]. J Shanxi Med Univ (山西医科大学学报), 2018, 49:26-31.
[45] Yang WW. Expression and Significance of Cytokine IL-21 in Serum of Patients with Primary Sjogren's Syndrome (细胞因子IL-21在原发性干燥综合征患者血清中的表达水平及意义)[D]. Shijiazhuang:Hebei Medical University, 2014.
[46] Chu YM, Zhou FL, Xu Y, et al. Expression profile analysis of long noncoding RNAs and mRNAs in the human colon cancer cells regulated by VTCN1[J]. J Shanghai Jiaotong Univ (Med Sci) (上海交通大学学报(医学版)), 2019, 39:58-65.
[47] Wang H, Feng TT, Wang BR, et al. Using single cell PCR technology efficient screen CRISPR/Cas9 mediated lncRNA knockout cloned cell lines[J]. Chin J Cell Biol (中国细胞生物学学报), 2017, 39:82-90.
[48] Xue XY, Huang SZ, Pan LH, et al. The diagnostic value of testing analysis of rheumatoid factor, c-reactive protein and immune globulin in patients with rheumatoid arthritis[J]. Clin Lab J (Electr Ed) (临床检验杂志(电子版)), 2018, 7:460-461.
[49] Liu YR. Long Noncoding RNA MEG3 Regulates Rheumatoid Arthritis by Targeting NLRC5(长链非编码RNA MEG3调控NLRC5在类风湿关节炎中的作用与机制研究)[D]. Hefei:Anhui Medical University, 2019.
[50] Zhang HJ, Wei QF, Wang SJ, et al. lncRNA Hotair alleviates rheumatoid arthritis by targeting miR-138 and inactivating NF-κB pathway[J]. Int Immunopharmacol, 2017, 50:283-290.
[51] Spurlock CF 3rd, Tossberg JT, Matlock BK, et al. Methotrexate inhibits NF-κB activity via long intergenic (noncoding) RNA-p21 induction[J]. Arthritis Rheumatol, 2014, 66:2947-2957.
[52] Jelcic I, Al Nimer F, Wang J, et al. Memory B cells activate brain-homing, autoreactive CD4+ T cells in multiple sclerosis[J]. Cell, 2018, 175:85-100.
[53] Zhang F, Liu G, Wei C, et al. Linc-MAF-4 regulates Th1/Th2 differentiation and is associated with the pathogenesis of multiple sclerosis by targeting MAF[J]. FASEB J, 2017, 31:519-525.
[54] Zhang F, Liu G, Li D, et al. DDIT4 and associated lncDDIT4 modulate Th17 differentiation through the DDIT4/TSC/mTOR pathway[J]. J Immunol, 2018, 200:1618-1626.
[55] Tang M, Zhang YG. Expression and clinical significance of serum lncRNA MIR155HG in patients with systemic lupus erythematosus[J]. J Pract Med (实用医学杂志), 2019, 35:55-58.
[56] Rasmussen TK, Andersen T, Bak RO, et al. Overexpression of microRNA-155 increases IL-21 mediated STAT3 signaling and IL-21 production in systemic lupus erythematosus[J]. Arthritis Res Ther, 2015, 17:154.
[57] Gao F, Tan Y, Luo H. MALAT1 is involved in type I IFNs-mediated systemic lupus erythematosus by up-regulating OAS2, OAS3, and OASL[J]. Braz J Med Biol Res, 2020, 53:e9292.
[58] Dai C. Correlation Research about the Expression of MiR326 and Ets-1 in CD4+ T Cells and the Th17 Cells Proportion from Patients with SLE (SLE患者CD4+ T细胞中miR326与Ets-1表达水平与Th17细胞比例的相关性研究及临床意义)[D]. Anhui:Anhui Medical University, 2016.
[59] Hu Y, Luan C, Lian N, et al. Expression of proprotein convertase subtilisin/kexin type 9 in the plasma of patients with psoriasis and its effect on the activation of peripheral CD4+ T cells[J]. Chin J Dermatol (中华皮肤科杂志), 2019, 52:90-93.
[60] Ahn R, Gupta R, Lai K, et al. Network analysis of psoriasis reveals biological pathways and roles for coding and long non-coding RNAs[J]. BMC Genomics, 2016, 1:841-842.
[61] Széll M, Danis J, Bata-Csörgő Z, et al. PRINS, a primate-specific long non-coding RNA, plays a role in the keratinocyte stress response and psoriasis pathogenesis[J]. Pflugers Arch, 2016, 468:935-943.
[62] Danis J, Göblös A, Bata-Csörgő Z, et al. PRINS non-coding RNA regulates nucleic acid-induced innate immune responses of human keratinocytes[J]. Front Immunol, 2017, 8:1053-1055.
[63] Shi H. The Role of TLR9 Signal Pathway Abnormality in the Pathogenesis of Sjogren's Syndrome (TLR9信号通路异常在舍格伦综合征发病机制中的作用研究[D]. Shanghai:Shanghai Jiaotong University, 2017.
[64] Li YS. Regulation of Long Non-coding RNA AK124826 on Th17/Treg Cell Balance in Patient with Polymyositis/Dermatomysitis (长链非编码RNA AK124826调控Th17/Treg平衡的机制及其在多发性肌炎/皮肌炎中的应用)[D]. Suzhou:Suzhou University, 2017.
[65] Lobo-Alves SC, de Oliveira LA, Petzl-Erler ML. Region 1p13.2 including the RSBN1, PTPN22, AP4B1 and long non-coding RNA genes does not bear risk factors for endemic pemphigus foliaceus (fogo selvagem)[J]. Int J Immunogenet, 2019, 46:139-145.
[66] Jiang KK. Exploration of Application and Mechanisms of Non-coding RNAs in Disease Activity Evaluation and Malignancy Surveillance in Ulcerative Colitis (非编码RNA在溃疡性结肠炎活动度评估和癌变监测的应用及机理初探)[D]. Beijing:Beijing Union Medical College, 2017.