药学学报, 2020, 55(12): 2800-2810
引用本文:
吴军, 于海波. 大麻二酚在神经精神疾病中的作用与分子机制研究进展[J]. 药学学报, 2020, 55(12): 2800-2810.
WU Jun, YU Hai-bo. Recent advances in understanding the roles and molecular mechanisms of cannabidiol in neuropsychiatric disorders[J]. Acta Pharmaceutica Sinica, 2020, 55(12): 2800-2810.

大麻二酚在神经精神疾病中的作用与分子机制研究进展
吴军, 于海波
中国医学科学院、北京协和医学院药物研究所, 天然药物活性物质与功能国家重点实验室, 北京 100050
摘要:
大麻(Cannabis sativa)是一种古老的药用植物,常被用于缓解疼痛和癫痫性发作。然而,大麻素具有成瘾性,这限制了它们的临床使用。大麻二酚(cannabidiol,CBD)作为一种没有精神活性的大麻成分,不良反应明显小于Δ9-四氢大麻酚(Δ9-tetrahydrocannabinol,THC),因此受到了广泛关注。研究发现,CBD对多种神经精神疾病均有改善作用,但具体的作用机制尚未明确。由于它与经典的大麻素受体间的亲和力低,越来越多的研究开始关注内源性大麻素系统以外的其他靶点。本综述主要总结CBD在癫痫、神经病理性疼痛、焦虑症和抑郁症中的作用和分子机制。
关键词:    大麻二酚      神经元兴奋性      离子通道      G蛋白偶联受体      神经精神疾病     
Recent advances in understanding the roles and molecular mechanisms of cannabidiol in neuropsychiatric disorders
WU Jun, YU Hai-bo
State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
Abstract:
Cannabis sativa, one of the ancient medicinal plants, has been used to alleviate pain and seizures. However, cannabinoids are often addictive, which limits their clinical use. Cannabidiol (CBD) as a non-psychoactive component of Cannabis sativa, has much weaker adverse effects than Δ9-tetrahydrocannabinol (THC) and therefore has received widespread attention. CBD has been found to ameliorate a variety of neuropsychiatric diseases, but the precise mechanism(s) of action are still unclear. Due to its low affinity for classical cannabinoid receptors current studies are focusing on other targets outside the endocannabinoid system. In the present review we mainly summarize the effects and molecular mechanisms of CBD in neuropsychiatric disorders, including epilepsy, neuropathic pain, anxiety, and depression.
Key words:    cannabidiol    neuronal excitability    ion channel    G-protein-coupled receptor    neuropsychiatric disorder   
收稿日期: 2020-05-02
DOI: 10.16438/j.0513-4870.2020-0672
基金项目: 重大新药创制科技重大专项(2018ZX09711001-004-001);新药作用机制研究与药效评价北京市重点实验室(BZ0150).
通讯作者: 于海波,Tel:86-10-83165742,E-mail:haiboyu@imm.ac.cn
Email: haiboyu@imm.ac.cn
相关功能
PDF(991KB) Free
打印本文
0
作者相关文章
吴军  在本刊中的所有文章
于海波  在本刊中的所有文章

参考文献:
[1] Bonini SA, Premoli M, Tambaro S, et al. Cannabis sativa:a comprehensive ethnopharmacological review of a medicinal plant with a long history[J]. J Ethnopharmacol, 2018, 227:300-315.
[2] Friedman D, Sirven JI. Historical perspective on the medical use of cannabis for epilepsy:ancient times to the 1980s[J]. Epilepsy Behav, 2017, 70:298-301.
[3] Russo EB. History of cannabis and its preparations in saga, science, and sobriquet[J]. Chem Biodivers, 2007, 4:1614-1648.
[4] Mechoulam R, Parker LA, Gallily R. Cannabidiol:an overview of some pharmacological aspects[J]. J Clin Pharmacol, 2002, 42:11s-19s.
[5] Morgan CJ, Das RK, Joye A, et al. Cannabidiol reduces cigarette consumption in tobacco smokers:preliminary findings[J]. Addict Behav, 2013, 38:2433-2436.
[6] Crippa JA, Derenusson GN, Ferrari TB, et al. Neural basis of anxiolytic effects of cannabidiol (CBD) in generalized social anxiety disorder:a preliminary report[J]. J Psychopharmacol, 2011, 25:121-130.
[7] Bhattacharyya S, Wilson R, Appiah-Kusi E, et al. Effect of cannabidiol on medial temporal, midbrain, and striatal dysfunction in people at clinical high risk of psychosis:a randomized clinical trial[J]. JAMA Psychiatry, 2018, 75:1107-1117.
[8] Khan AA, Shekh-Ahmad T, Khalil A, et al. Cannabidiol exerts antiepileptic effects by restoring hippocampal interneuron functions in a temporal lobe epilepsy model[J]. Br J Pharmacol, 2018, 175:2097-2115.
[9] Basavarajappa BS, Shivakumar M, Joshi V, et al. Endocannabinoid system in neurodegenerative disorders[J]. J Neurochem, 2017, 142:624-648.
[10] van der Stelt M, Di Marzo V. Cannabinoid receptors and their role in neuroprotection[J]. Neuromolecular Med, 2005, 7:37-50.
[11] Cristino L, Bisogno T, Di Marzo V. Cannabinoids and the expanded endocannabinoid system in neurological disorders[J]. Nat Rev Neurol, 2019, 16:9-29.
[12] Tham M, Yilmaz O, Alaverdashvili M, et al. Allosteric and orthosteric pharmacology of cannabidiol and cannabidiol-dimethylheptyl at the type 1 and type 2 cannabinoid receptors[J]. Br J Pharmacol, 2019, 176:1455-1469.
[13] Wu J. Cannabis, cannabinoid receptors, and endocannabinoid system:yesterday, today, and tomorrow[J]. Acta Pharmacol Sin, 2019, 40:297-299.
[14] Thomas A, Baillie GL, Phillips AM, et al. Cannabidiol displays unexpectedly high potency as an antagonist of CB1 and CB2 receptor agonists in vitro[J]. Br J Pharmacol, 2007, 150:613-623.
[15] Laprairie RB, Bagher AM, Kelly ME, et al. Cannabidiol is a negative allosteric modulator of the cannabinoid CB1 receptor[J]. Br J Pharmacol, 2015, 172:4790-4805.
[16] Lunn CA, Fine JS, Rojas-Triana A, et al. A novel cannabinoid peripheral cannabinoid receptor-selective inverse agonist blocks leukocyte recruitment in vivo[J]. J Pharmacol Exp Ther, 2006, 316:780-788.
[17] Hartmann A, Lisboa SF, Sonego AB, et al. Cannabidiol attenuates aggressive behavior induced by social isolation in mice:involvement of 5-HT1A and CB1 receptors[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2019, 94:109637.
[18] Sartim AG, Guimarães FS, Joca SRL. Antidepressant-like effect of cannabidiol injection into the ventral medial prefrontal cortex-possible involvement of 5-HT1A and CB1 receptors[J]. Behav Brain Res, 2016, 303:218-227.
[19] Castillo A, Tolón MR, Fernández-Ruiz J, et al. The neuroprotective effect of cannabidiol in an in vitro model of newborn hypoxic-ischemic brain damage in mice is mediated by CB2 and adenosine receptors[J]. Neurobiol Dis, 2010, 37:434-440.
[20] Galaj E, Bi GH, Yang HJ, et al. Cannabidiol attenuates the rewarding effects of cocaine in rats by CB2, 5-HT1A and TRPV1 receptor mechanisms[J]. Neuropharmacology, 2020, 167:107740.
[21] Bisogno T, Hanus L, De Petrocellis L, et al. Molecular targets for cannabidiol and its synthetic analogues:effect on vanilloid VR1 receptors and on the cellular uptake and enzymatic hydrolysis of anandamide[J]. Br J Pharmacol, 2001, 134:845-852.
[22] De Petrocellis L, Ligresti A, Moriello AS, et al. Effects of cannabinoids and cannabinoid-enriched cannabis extracts on TRP channels and endocannabinoid metabolic enzymes[J]. Br J Pharmacol, 2011, 163:1479-1494.
[23] Ibeas Bih C, Chen T, Nunn AV, et al. Molecular targets of cannabidiol in neurological disorders[J]. Neurotherapeutics, 2015, 12:699-730.
[24] Zhornitsky S, Potvin S. Cannabidiol in humans-the quest for therapeutic targets[J]. Pharmaceuticals (Basel), 2012, 5:529-552.
[25] Ryberg E, Larsson N, Sjogren S, et al. The orphan receptor GPR55 is a novel cannabinoid receptor[J]. Br J Pharmacol, 2007, 152:1092-1101.
[26] Xiong W, Cui TX, Cheng KJ, et al. Cannabinoids suppress inflammatory and neuropathic pain by targeting alpha3 glycine receptors[J]. J Exp Med, 2012, 209:1121-1134.
[27] Russo EB, Burnett A, Hall B, et al. Agonistic properties of cannabidiol at 5-HT1a receptors[J]. Neurochem Res, 2005, 30:1037-1043.
[28] Yang KH, Galadari S, Isaev D, et al. The nonpsychoactive cannabinoid cannabidiol inhibits 5-hydroxytryptamine 3A receptor-mediated currents in Xenopus laevis oocytes[J]. J Pharmacol Exp Ther, 2010, 333:547-554.
[29] Gonca E, Darici F. The effect of cannabidiol on ischemia/reperfusion-induced ventricular arrhythmias:the role of adenosine A1 receptors[J]. J Cardiovasc Pharmacol Ther, 2015, 20:76-83.
[30] De Petrocellis L, Orlando P, Moriello AS, et al. Cannabinoid actions at TRPV channels:effects on TRPV3 and TRPV4 and their potential relevance to gastrointestinal inflammation[J]. Acta Physiol (Oxf), 2012, 204:255-266.
[31] De Petrocellis L, Vellani V, Schiano-Moriello A, et al. Plant-derived cannabinoids modulate the activity of transient receptor potential channels of ankyrin type-1 and melastatin type-8[J]. J Pharmacol Exp Ther, 2008, 325:1007-1015.
[32] Ghovanloo MR, Shuart NG, Mezeyova J, et al. Inhibitory effects of cannabidiol on voltage-dependent sodium currents[J]. J Biol Chem, 2018, 293:16546-16558.
[33] Ross HR, Napier I, Connor M. Inhibition of recombinant human T-type calcium channels by delta9-tetrahydrocannabinol and cannabidiol[J]. J Biol Chem, 2008, 283:16124-16134.
[34] Bakas T, van Nieuwenhuijzen PS, Devenish SO, et al. The direct actions of cannabidiol and 2-arachidonoyl glycerol at GABAA receptors[J]. Pharmacol Res, 2017, 119:358-370.
[35] Ali A. Global health:epilepsy[J]. Semin Neurol, 2018, 38:191-199.
[36] Tang F, Hartz AMS, Bauer B. Drug-resistant epilepsy:multiple hypotheses, few answers[J]. Front Neurol, 2017, 8:301.
[37] Jones NA, Glyn SE, Akiyama S, et al. Cannabidiol exerts anti-convulsant effects in animal models of temporal lobe and partial seizures[J]. Seizure, 2012, 21:344-352.
[38] Huizenga MN, Sepulveda-Rodriguez A, Forcelli PA. Preclinical safety and efficacy of cannabidivarin for early life seizures[J]. Neuropharmacology, 2019, 148:189-198.
[39] Devinsky O, Cross JH, Laux L, et al. Trial of cannabidiol for drug-resistant seizures in the Dravet syndrome[J]. New Engl J Med, 2017, 376:2011-2020.
[40] Thiele EA, Marsh ED, French JA, et al. Cannabidiol in patients with seizures associated with Lennox-Gastaut syndrome (GWPCARE4):a randomised, double-blind, placebo-controlled phase 3 trial[J]. Lancet, 2018, 391:1085-1096.
[41] Michels G, Moss SJ. GABAA receptors:properties and trafficking[J]. Crit Rev Biochem Mol Biol, 2007, 42:3-14.
[42] Yu FH, Mantegazza M, Westenbroek RE, et al. Reduced sodium current in GABAergic interneurons in a mouse model of severe myoclonic epilepsy in infancy[J]. Nat Neurosci, 2006, 9:1142-1149.
[43] Cheah CS, Yu FH, Westenbroek RE, et al. Specific deletion of NaV1.1 sodium channels in inhibitory interneurons causes seizures and premature death in a mouse model of Dravet syndrome[J]. Proc Natl Acad Sci U S A, 2012, 109:14646-14651.
[44] Carvill GL, Weckhuysen S, McMahon JM, et al. GABRA1 and STXBP1:novel genetic causes of Dravet syndrome[J]. Neurology, 2014, 82:1245-1253.
[45] Kang JQ, Macdonald RL. Molecular pathogenic basis for GABRG2 mutations associated with a spectrum of epilepsy syndromes, from generalized absence epilepsy to Dravet syndrome[J]. JAMA Neurol, 2016, 73:1009-1016.
[46] Nomura T, Hawkins NA, Kearney JA, et al. Potentiating alpha2 subunit containing perisomatic GABAA receptors protects against seizures in a mouse model of Dravet syndrome[J]. J Physiol, 2019, 597:4293-4307.
[47] Camfield PR. Definition and natural history of Lennox-Gastaut syndrome[J]. Epilepsia, 2011, 52 Suppl 5:3-9.
[48] Asadi-Pooya AA. Lennox-Gastaut syndrome:a comprehensive review[J]. Neurol Sci, 2018, 39:403-414.
[49] Cai KF, Wang J, Eissman J, et al. A missense mutation in SLC6A1 associated with Lennox-Gastaut syndrome impairs GABA transporter 1 protein trafficking and function[J]. Exp Neurol, 2019, 320:112973.
[50] Shi YW, Zhang Q, Cai KF, et al. Synaptic clustering differences due to different GABRB3 mutations cause variable epilepsy syndromes[J]. Brain, 2019, 142:3028-3044.
[51] Kaplan JS, Stella N, Catterall WA, et al. Cannabidiol attenuates seizures and social deficits in a mouse model of Dravet syndrome[J]. Proc Natl Acad Sci U S A, 2017, 114:11229-11234.
[52] Rogawski MA, Loscher W. The neurobiology of antiepileptic drugs[J]. Nat Rev Neurosci, 2004, 5:553-564.
[53] Patel RR, Barbosa C, Brustovetsky T, et al. Aberrant epilepsy-associated mutant Nav1.6 sodium channel activity can be targeted with cannabidiol[J]. Brain, 2016, 139:2164-2181.
[54] Kong WJ, Zhang YJ, Gao Y, et al. SCN8A mutations in Chinese children with early onset epilepsy and intellectual disability[J]. Epilepsia, 2015, 56:431-438.
[55] O'Brien JE, Meisler MH. Sodium channel SCN8A (Nav1.6):properties and de novo mutations in epileptic encephalopathy and intellectual disability[J]. Front Genet, 2013, 4:213.
[56] Cruz JS, Silva DF, Ribeiro LA, et al. Resurgent Na+ current:a new avenue to neuronal excitability control[J]. Life Sci, 2011, 89:564-569.
[57] Hargus NJ, Nigam A, Bertram EH 3rd, et al. Evidence for a role of Nav1.6 in facilitating increases in neuronal hyperexcitability during epileptogenesis[J]. J Neurophysiol, 2013, 110:1144-1157.
[58] Xing JH, Li JH. TRPV1 receptor mediates glutamatergic synaptic input to dorsolateral periaqueductal gray (dl-PAG) neurons[J]. J Neurophysiol, 2007, 97:503-511.
[59] Sun FJ, Guo W, Zheng DH, et al. Increased expression of TRPV1 in the cortex and hippocampus from patients with mesial temporal lobe epilepsy[J]. J Mol Neurosci, 2013, 49:182-193.
[60] Iannotti FA, Hill CL, Leo A, et al. Nonpsychotropic plant cannabinoids, cannabidivarin (CBDV) and cannabidiol (CBD), activate and desensitize transient receptor potential vanilloid 1(TRPV1) channels in vitro:potential for the treatment of neuronal hyperexcitability[J]. ACS Chem Neurosci, 2014, 5:1131-1141.
[61] Gray RA, Stott CG, Jones NA, et al. Anticonvulsive properties of cannabidiol in a model of generalized seizure are transient receptor potential vanilloid 1 dependent[J]. Cannabis Cannabinoid Res, 2019. DOI:doi.org/10.1089/can.2019.0028.
[62] Gray RA, Whalley BJ. The proposed mechanisms of action of CBD in epilepsy[J]. Epileptic Disord, 2020, 22:10-15.
[63] Fredholm BB, Chen JF, Cunha RA, et al. Adenosine and brain function[J]. Int Rev Neurobiol, 2005, 63:191-270.
[64] Carrier EJ, Auchampach JA, Hillard CJ. Inhibition of an equilibrative nucleoside transporter by cannabidiol:a mechanism of cannabinoid immunosuppression[J]. Proc Natl Acad Sci U S A, 2006, 103:7895-7900.
[65] Baron R, Binder A, Wasner G. Neuropathic pain:diagnosis, pathophysiological mechanisms, and treatment[J]. Lancet Neurol, 2010, 9:807-819.
[66] Jensen TS, Finnerup NB. Allodynia and hyperalgesia in neuropathic pain:clinical manifestations and mechanisms[J]. Lancet Neurol, 2014, 13:924-935.
[67] Comelli F, Giagnoni G, Bettoni I, et al. Antihyperalgesic effect of a Cannabis sativa extract in a rat model of neuropathic pain:mechanisms involved[J]. Phytother Res, 2008, 22:1017-1024.
[68] De Gregorio D, McLaughlin RJ, Posa L, et al. Cannabidiol modulates serotonergic transmission and reverses both allodynia and anxiety-like behavior in a model of neuropathic pain[J]. Pain, 2019, 160:136-150.
[69] Ward SJ, McAllister SD, Kawamura R, et al. Cannabidiol inhibits paclitaxel-induced neuropathic pain through 5-HT1A receptors without diminishing nervous system function or chemotherapy efficacy[J]. Br J Pharmacol, 2014, 171:636-645.
[70] Jesus CHA, Redivo DDB, Gasparin AT, et al. Cannabidiol attenuates mechanical allodynia in streptozotocin-induced diabetic rats via serotonergic system activation through 5-HT1A receptors[J]. Brain Res, 2019, 1715:156-164.
[71] Serpell M, Ratcliffe S, Hovorka J, et al. A double-blind, randomized, placebo-controlled, parallel group study of THC/CBD spray in peripheral neuropathic pain treatment[J]. Eur J Pain, 2014, 18:999-1012.
[72] Langford RM, Mares J, Novotna A, et al. A double-blind, randomized, placebo-controlled, parallel-group study of THC/CBD oromucosal spray in combination with the existing treatment regimen, in the relief of central neuropathic pain in patients with multiple sclerosis[J]. J Neurol, 2013, 260:984-997.
[73] Woodhams SG, Chapman V, Finn DP, et al. The cannabinoid system and pain[J]. Neuropharmacology, 2017, 124:105-120.
[74] do Nascimento GC, Ferrari DP, Guimaraes FS, et al. Cannabidiol increases the nociceptive threshold in a preclinical model of Parkinson's disease[J]. Neuropharmacology, 2020, 163:107808.
[75] Marwaha L, Bansal Y, Singh R, et al. TRP channels:potential drug target for neuropathic pain[J]. Inflammopharmacology, 2016, 24:305-317.
[76] Dai Y. TRPs and pain[J]. Semin Immunopathol, 2016, 38:277-291.
[77] Muller C, Morales P, Reggio PH. Cannabinoid ligands targeting TRP channels[J]. Front Mol Neurosci, 2018, 11:487.
[78] Cao NK, Lü HN, Wei NN, et al. Natural modulators of transient receptor potential channels[J]. Acta Pharm Sin (药学学报), 2017, 52:673-684.
[79] Maione S, Piscitelli F, Gatta L, et al. Non-psychoactive cannabinoids modulate the descending pathway of antinociception in anaesthetized rats through several mechanisms of action[J]. Br J Pharmacol, 2011, 162:584-596.
[80] Dyson A, Peacock M, Chen A, et al. Antihyperalgesic properties of the cannabinoid CT-3 in chronic neuropathic and inflammatory pain states in the rat[J]. Pain, 2005, 116:129-137.
[81] Karst M, Salim K, Burstein S, et al. Analgesic effect of the synthetic cannabinoid CT-3 on chronic neuropathic pain:a randomized controlled trial[J]. JAMA, 2003, 290:1757-1762.
[82] Foadi N, Berger C, Pilawski I, et al. Inhibition of voltage-gated Na⁺ channels by the synthetic cannabinoid ajulemic acid[J]. Anesth Analg, 2014, 118:1238-1245.
[83] Bourinet E, Francois A, Laffray S. T-type calcium channels in neuropathic pain[J]. Pain, 2016, 157 Suppl 1:S15-S22.
[84] Carbone E, Lux HD. A low voltage-activated, fully inactivating Ca channel in vertebrate sensory neurones[J]. Nature, 1984, 310:501-502.
[85] Fedulova SA, Kostyuk PG, Veselovsky NS. Two types of calcium channels in the somatic membrane of new-born rat dorsal root ganglion neurones[J]. J Physiol, 1985, 359:431-446.
[86] Talley EM, Cribbs LL, Lee JH, et al. Differential distribution of three members of a gene family encoding low voltage-activated (T-type) calcium channels[J]. J Neurosci, 1999, 19:1895-1911.
[87] Todorovic SM, Jevtovic-Todorovic V. The role of T-type calcium channels in peripheral and central pain processing[J]. CNS Neurol Disord Drug Targets, 2006, 5:639-653.
[88] Bourinet E, Alloui A, Monteil A, et al. Silencing of the Cav3.2 T-type calcium channel gene in sensory neurons demonstrates its major role in nociception[J]. EMBO J, 2004, 24:315-324.
[89] Messinger RB, Naik AK, Jagodic MM, et al. In vivo silencing of the CaV3.2 T-type calcium channels in sensory neurons alleviates hyperalgesia in rats with streptozocin-induced diabetic neuropathy[J]. Pain, 2009, 145:184-195.
[90] Lynch JW, Callister RJ. Glycine receptors:a new therapeutic target in pain pathways[J]. Curr Opin Investig Drugs, 2006, 7:48-53.
[91] Lynch JW. Molecular structure and function of the glycine receptor chloride channel[J]. Physiol Rev, 2004, 84:1051-1095.
[92] Harvey RJ, Depner UB, Wässle H, et al. GlyR alpha3:an essential target for spinal PGE2-mediated inflammatory pain sensitization[J]. Science, 2004, 304:884-887.
[93] Cortes-Altamirano JL, Olmos-Hernandez A, Jaime HB, et al. Review:5-HT1, 5-HT2, 5-HT3 and 5-HT7 receptors and their role in the modulation of pain response in the central nervous system[J]. Curr Neuropharmacol, 2018, 16:210-221.
[94] Thapa D, Cairns EA, Szczesniak AM, et al. The cannabinoids Δ8THC, CBD, and HU-308 act via distinct receptors to reduce corneal pain and inflammation[J]. Cannabis Cannabinoid Res, 2018, 3:11-20.
[95] Huang YQ, Wang Y, Wang H, et al. Prevalence of mental disorders in China:a cross-sectional epidemiological study[J]. Lancet Psychiatry, 2019, 6:211-224.
[96] Campos AC, Guimarães FS. Involvement of 5HT1A receptors in the anxiolytic-like effects of cannabidiol injected into the dorsolateral periaqueductal gray of rats[J]. Psychopharmacology (Berl), 2008, 199:223-230.
[97] Gomes FV, Resstel LB, Guimaraes FS. The anxiolytic-like effects of cannabidiol injected into the bed nucleus of the stria terminalis are mediated by 5-HT1A receptors[J]. Psychopharmacology (Berl), 2011, 213:465-473.
[98] Marinho AL, Vila-Verde C, Fogaca MV, et al. Effects of intra-infralimbic prefrontal cortex injections of cannabidiol in the modulation of emotional behaviors in rats:contribution of 5HT(1)A receptors and stressful experiences[J]. Behav Brain Res, 2015, 286:49-56.
[99] Fogaca MV, Reis FM, Campos AC, et al. Effects of intra-prelimbic prefrontal cortex injection of cannabidiol on anxiety-like behavior:involvement of 5HT1A receptors and previous stressful experience[J]. Eur Neuropsychopharmacol, 2014, 24:410-419.
[100] Skelley JW, Deas CM, Curren Z, et al. Use of cannabidiol in anxiety and anxiety-related disorders[J]. J Am Pharm Assoc, 2020, 60:253-261.
[101] Hurd YL, Spriggs S, Alishayev J, et al. Cannabidiol for the reduction of cue-induced craving and anxiety in drug-abstinent individuals with heroin use disorder:a double-blind randomized placebo-controlled trial[J]. Am J Psychiatry, 2019, 176:911-922.
[102] Klier CM, de Gier C, Felnhofer A, et al. A case report of cannabidiol treatment of a Crohn's disease patient with anxiety disorder[J]. J Clin Psychopharmacol, 2020, 40:90-92.
[103] de Faria SM, de Morais Fabrício D, Tumas V, et al. Effects of acute cannabidiol administration on anxiety and tremors induced by a simulated public speaking test in patients with Parkinson's disease[J]. J Psychopharmacol, 2020, 34:189-196.
[104] Campos AC, Guimarães FS. Evidence for a potential role for TRPV1 receptors in the dorsolateral periaqueductal gray in the attenuation of the anxiolytic effects of cannabinoids[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2009, 33:1517-1521.
[105] Campos AC, Ortega Z, Palazuelos J, et al. The anxiolytic effect of cannabidiol on chronically stressed mice depends on hippocampal neurogenesis:involvement of the endocannabinoid system[J]. Int J Neuropsychopharmacol, 2013, 16:1407-1419.
[106] Stern CAJ, da Silva TR, Raymundi AM, et al. Cannabidiol disrupts the consolidation of specific and generalized fear memories via dorsal hippocampus CB1 and CB2 receptors[J]. Neuropharmacology, 2017, 125:220-230.
[107] Stern CA, Gazarini L, Takahashi RN, et al. On disruption of fear memory by reconsolidation blockade:evidence from cannabidiol treatment[J]. Neuropsychopharmacology, 2012, 37:2132-2142.
[108] Breuer A, Haj CG, Fogaça MV, et al. Fluorinated cannabidiol derivatives:enhancement of activity in mice models predictive of anxiolytic, antidepressant and antipsychotic effects[J]. PLoS One, 2016, 11:e0158779.
[109] Malhi GS, Mann JJ. Depression[J]. Lancet, 2018, 392:2299-2312.
[110] Wong ML, Licinio J. From monoamines to genomic targets:a paradigm shift for drug discovery in depression[J]. Nat Rev Drug Discov, 2004, 3:136-151.
[111] Ceskova E, Silhan P. Novel treatment options in depression and psychosis[J]. Neuropsychiatr Dis Treat, 2018, 14:741-747.
[112] Zanelati TV, Biojone C, Moreira FA, et al. Antidepressant-like effects of cannabidiol in mice:possible involvement of 5-HT1A receptors[J]. Br J Pharmacol, 2010, 159:122-128.
[113] Linge R, Jiménez-Sánchez L, Campa L, et al. Cannabidiol induces rapid-acting antidepressant-like effects and enhances cortical 5-HT/glutamate neurotransmission:role of 5-HT1A receptors[J]. Neuropharmacology, 2016, 103:16-26.
[114] Sales AJ, Fogaca MV, Sartim AG, et al. Cannabidiol induces rapid and sustained antidepressant-like effects through increased BDNF signaling and synaptogenesis in the prefrontal cortex[J]. Mol Neurobiol, 2019, 56:1070-1081.
[115] McLaughlin RJ, Hill MN, Bambico FR, et al. Prefrontal cortical anandamide signaling coordinates coping responses to stress through a serotonergic pathway[J]. Eur Neuropsychopharmacol, 2012, 22:664-671.
[116] Corroon J, Phillips JA. A cross-sectional study of cannabidiol users[J]. Cannabis Cannabinoid Res, 2018, 3:152-161.