药学学报, 2020, 55(12): 2811-2817
王诺琦, 杨秀颖, 杜冠华. 影响糖尿病伤口愈合机制研究进展[J]. 药学学报, 2020, 55(12): 2811-2817.
WANG Nuo-qi, YANG Xiu-ying, DU Guan-hua. Advances in research on mechanisms of diabetic wound healing[J]. Acta Pharmaceutica Sinica, 2020, 55(12): 2811-2817.

王诺琦, 杨秀颖, 杜冠华
中国医学科学院、北京协和医学院药物研究所, 药物靶点研究与新药筛选北京市重点实验室, 北京 100050
关键词:    糖尿病      伤口愈合      皮肤      氧化应激      慢性炎症     
Advances in research on mechanisms of diabetic wound healing
WANG Nuo-qi, YANG Xiu-ying, DU Guan-hua
Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
Wound healing is a complex and highly regulated process to maintaining the skin barrier function. Wounds of diabetic patients are hard or even not healing. Non-healing diabetic foot ulcers can lead to lower-extremity amputations. Diabetic wound healing problem is the main complication that leads to high disability rate of diabetes and can threaten the lives in severe cases. The healing of skin wounds requires the synergy of multiple factors to restore the injured skin to its barrier function. The mechanisms that cause it difficult to heal diabetic wounds are complex, including oxidative stress, chronic inflammation, decreased neovascularization, peripheral neuropathy, and imbalance of extracellular matrix accumulation and remodeling. This review classifies mechanisms of diabetic wound healing and provides a reference for its further research.
Key words:    diabetes    wound healing    skin    oxidative stress    chronic inflammation   
收稿日期: 2020-06-09
DOI: 10.16438/j.0513-4870.2020-0933
基金项目: 国家重大研发项目(2018ZX09711001-012,2018ZX09711001-003-005,2017YFG0112900);国家自然科学基金资助项目(81470159,81770847);中国医学科学院医学与健康科技创新工程协同创新团队项目(CAMSI2M,2016-I2M-3-007,2017-I2M-1-010).
通讯作者: 杨秀颖,Tel:86-10-63165313,E-mail:lucia@imm.ac.cn;杜冠华,E-mail:dugh@imm.ac.cn
Email: lucia@imm.ac.cn;dugh@imm.ac.cn
PDF(773KB) Free
王诺琦  在本刊中的所有文章
杨秀颖  在本刊中的所有文章
杜冠华  在本刊中的所有文章

[1] International Diabetes Federation:diabetes atlas IDF, 9th edition[EB/OL]. Brussels:International Diabetes Federation, 2019[2019-11-14]. https://www.diabetesatlas.org.
[2] Patel S, Srivastava S, Singh MR, et al. Mechanistic insight into diabetic wounds:pathogenesis, molecular targets and treatment strategies to pace wound healing[J]. Biomed Pharmacother, 2019, 112:108615.
[3] Davis FM, Kimball A, Boniakowski A, et al. Dysfunctional wound healing in diabetic foot ulcers:new crossroads[J]. Curr Diab Rep, 2018, 18:2.
[4] Rodrigues M, Kosaric N, Bonham CA, et al. Wound healing:a cellular perspective[J]. Physiol Rev, 2019, 99:665-706.
[5] Boniakowski AE, Kimball AS, Jacobs BN, et al. Macrophage-mediated inflammation in normal and diabetic wound healing[J]. J Immunol, 2017, 199:17-24.
[6] Falanga V. Wound healing and its impairment in the diabetic foot[J]. Lancet, 2005, 366:1736-1743.
[7] Wang PH, Huang BS, Horng HC, et al. Wound healing[J]. J Chin Med Assoc, 2018, 81:94-101.
[8] Jhamb S, Vangaveti VN, Malabu UH. Genetic and molecular basis of diabetic foot ulcers:clinical review[J]. J Tissue Viability, 2016, 25:229-236.
[9] Cui X, Shang EX, Jiang S, et al. Interaction of Scutellaria-Coptis herb pair in improvement of glucose and lipid metabolism of type 2 diabetes rats based on response surface method[J]. Acta Pharm Sin (药学学报), 2018, 53:630-635.
[10] Salazar JJ, Ennis WJ, Koh TJ. Diabetes medications:impact on inflammation and wound healing[J]. J Diabetes Complications, 2016, 30:746-752.
[11] Armstrong DG, Boulton A, Bus SA. Diabetic foot ulcers and their recurrence[J]. N Engl J Med, 2017, 376:2367-2375.
[12] Kunkemoeller B, Kyriakides TR. Redox signaling in diabetic wound healing regulates extracellular matrix depositionv[J]. Antioxid Redox Signal, 2017, 27:823-838.
[13] Yao D, Brownlee M. Hyperglycemia-induced reactive oxygen species increase expression of the receptor for advanced glycation end products (RAGE) and RAGE ligands[J]. Diabetes, 2010, 59:249-255.
[14] Wu H, Cai L, de Haan JB, et al. Targeting oxidative stress in diabetic complications:new insights[J]. J Diabetes Res, 2018, 2018:1909675.
[15] Giacco F, Brownlee M. Oxidative stress and diabetic complications[J]. Circ Res, 2010, 107:1058-1070.
[16] Ji XY, Chen Y, Ye GH, et al. Detection of RAGE expression and its application to diabetic wound age estimation[J]. Int J Legal Med, 2017, 131:691-698.
[17] Marrotte EJ, Chen DD, Hakim JS, et al. Manganese superoxide dismutase expression in endothelial progenitor cells accelerates wound healing in diabetic mice[J]. J Clin Invest, 2010, 120:4207-4219.
[18] Elbatreek MH, Pachado MP, Cuadrado A, et al. Reactive oxygen comes of age:mechanism-based therapy of diabetic end-organ damage[J]. Trends Endocrinol Metab, 2019, 30:312-327.
[19] Chuang CY, Degendorfer G, Davies MJ. Oxidation and modification of extracellular matrix and its role in disease[J]. Free Radic Res, 2014, 48:970-989.
[20] Shukla SK, Sharma AK, Gupta V, et al. Pharmacological control of inflammation in wound healing[J]. J Tissue Viability, 2019, 28:218-222.
[21] Parisi L, Gini E, Baci D, et al. Macrophage polarization in chronic inflammatory diseases:killers or builders?[J]. J Immunol Res, 2018, 2018:8917804.
[22] Boniakowski AM, den Dekker AD, Davis FM, et al. SIRT3 regulates macrophage-mediated inflammation in diabetic wound repair[J]. J Invest Dermatol, 2019, 139:2528-2537.e2.
[23] Liu D, Yang P, Gao M, et al. NLRP3 activation induced by neutrophil extracellular traps sustains inflammatory response in the diabetic wound[J]. Clin Sci (Lond), 2019, 133:565-582.
[24] Mirza RE, Fang MM, Weinheimer-Haus EM, et al. Sustained inflammasome activity in macrophages impairs wound healing in type 2 diabetic humans and mice[J]. Diabetes, 2014, 63:1103-1114.
[25] Finley PJ, De Clue CE, Sell SA, et al. Diabetic wounds exhibit decreased Ym1 and arginase expression with increased expression of IL-17 and IL-20[J]. Adv Wound Care (New Rochelle), 2016, 5:486-494.
[26] Wong SL, Demers M, Martinod K, et al. Diabetes primes neutrophils to undergo NETosis, which impairs wound healing[J]. Nat Med, 2015, 21:815-819.
[27] Pries AR, Secomb TW. Making microvascular networks work:angiogenesis, remodeling, and pruning[J]. Physiology (Bethesda), 2014, 29:446-455.
[28] Zhang SH, Du JC, Li HY, et al. The protective effect of Qizhi hypoglycemic tablet on foot ulcer in streptozotocin-induced diabetes in rats[J]. Acta Pharm Sin (药学学报), 2019, 54:2256-2266.
[29] Qi W, Yang C, Dai Z, et al. High levels of pigment epithelium-derived factor in diabetes impair wound healing through suppression of Wnt signaling[J]. Diabetes, 2015, 64:1407-1419.
[30] Isidori AM, Venneri MA, Fiore D. Angiopoietin-1 and angiopoietin-2 in metabolic disorders:therapeutic strategies to restore the highs and lows of angiogenesis in diabetes[J]. J Endocrinol Invest, 2016, 39:1235-1246.
[31] Siddiqui K, Joy SS, Nawaz SS. Serum angiopoietin-2 levels as a marker in type 2 diabetes mellitus complications[J]. Int J Diabetes Dev Ctries, 2019, 39:387-393.
[32] Hellberg C, Ostman A, Heldin CH. PDGF and vessel maturation[J]. Recent Results Cancer Res, 2010, 180:103-114.
[33] Kolluru GK, Bir SC, Kevil CG. Endothelial dysfunction and diabetes:effects on angiogenesis, vascular remodeling, and wound healing[J]. Int J Vasc Med, 2012, 2012:918267.
[34] Wang H, Feng Y, Jin X, et al. Augmentation of hypoxia-inducible factor-1-alpha in reinfused blood cells enhances diabetic ischemic wound closure in mice[J]. Oncotarget, 2017, 8:114251-114258.
[35] Thangarajah H, Vial IN, Grogan RH, et al. HIF-1alpha dysfunction in diabetes[J]. Cell Cycle, 2010, 9:75-79.
[36] Yu WY, Sun W, Yu DJ, et al. Adipose-derived stem cells improve neovascularization in ischemic flaps in diabetic mellitus through HIF-1α/VEGF pathway[J]. Eur Rev Med Pharmacol Sci, 2018, 22:10-16.
[37] Botusan IR, Sunkari VG, Savu O, et al. Stabilization of HIF-1alpha is critical to improve wound healing in diabetic mice[J]. Proc Natl Acad Sci U S A, 2008, 105:19426-109431.
[38] Pichu S, Vimalraj S, Sathiyamoorthy J, et al. Association of hypoxia inducible factor-1 alpha exon 12 mutation in diabetic patients with and without diabetic foot ulcer[J]. Int J Biol Macromol, 2018, 119:833-837.
[39] Schreml S, Szeimies RM, Prantl L, et al. Oxygen in acute and chronic wound healing[J]. Br J Dermatol, 2010, 163:257-268.
[40] Chun H, Park Y. Oxidative stress and diabetic neuropathy[M]//Preedy VR.Diabetes (Second Edition). Salt Lake City:Academic Press, 2020:13-23.
[41] Oza MJ, Kulkarni YA. Formononetin ameliorates diabetic neuropathy by increasing expression of SIRT1 and NGF[J]. Chem Biodivers, 2020, 17:e2000162.
[42] Volmer-Thole M, Lobmann R. Neuropathy and diabetic foot syndrome[J]. Int J Mol Sci, 2016, 17:917-927.
[43] Lechleitner M, Abrahamian H, Francesconi C, et al. Diabetic neuropathy and diabetic foot syndrome (update 2019)[J]. Wien Klin Wochenschr, 2019, 131:141-150.
[44] Tellechea A, Leal E, Veves A, et al. Inflammatory and angiogenic abnormalities in diabetic wound healing:role of neuropeptides and therapeutic perspectives[J]. Open Circ Vasc J, 2010, 3:43-55.
[45] Tracy LE, Minasian RA, Caterson EJ. Extracellular matrix and dermal fibroblast function in the healing wound[J]. Adv Wound Care (New Rochelle), 2016, 5:119-136.
[46] Xuan YH, Huang BB, Tian HS, et al. High-glucose inhibits human fibroblast cell migration in wound healing via repression of bFGF-regulating JNK phosphorylation[J]. PLoS One, 2014, 9:e108182.
[47] Minossi JG, Lima Fde O, Caramori CA, et al. Alloxan diabetes alters the tensile strength, morphological and morphometric parameters of abdominal wall healing in rats[J]. Acta Cir Bras, 2014, 29:118-124.
[48] Roy DC, Mooney NA, Raeman CH, et al. Fibronectin matrix mimetics promote full-thickness wound repair in diabetic mice[J]. Tissue Eng Part A, 2013, 19:2517-2526.
[49] Maione AG, Smith A, Kashpur O, et al. Altered ECM deposition by diabetic foot ulcer-derived fibroblasts implicates fibronectin in chronic wound repair[J]. Wound Repair Regen, 2016, 24:630-643.
[50] Li Z, Guo S, Yao F, et al. Increased ratio of serum matrix metalloproteinase-9 against TIMP-1 predicts poor wound healing in diabetic foot ulcers[J]. J Diabetes Complications, 2013, 27:380-382.
[51] Gkogkolou P, Böhm M. Advanced glycation end products:key players in skin aging[J]. Dermatoendocrinol, 2012, 4:259-270.
[52] Shaikh-Kader A, Houreld NN, Rajendran NK, et al. The link between advanced glycation end products and apoptosis in delayed wound healing[J]. Cell Biochem Funct, 2019, 37:432-442.
[53] Bhan S, Mitra R, Arya AK, et al. A study on evaluation of apoptosis and expression of bcl-2-related marker in wound healing of streptozotocin-induced diabetic rats[J]. ISRN Dermatol, 2013, 2013:739054.
[54] Lao G, Ren M, Wang X, et al. Human tissue inhibitor of metalloproteinases-1 improved wound healing in diabetes through its anti-apoptotic effect[J]. Exp Dermatol, 2019, 28:528-535.
[55] Wong P, Tan T, Chan C, et al. The role of connexins in wound healing and repair:novel therapeutic approaches[J]. Front Physiol, 2016, 7:596.
[56] Zubair M, Ahmad J. Role of growth factors and cytokines in diabetic foot ulcer healing:a detailed review[J]. Rev Endocr Metab Disord, 2019, 20:207-217.
[57] Ramirez-Acuña JM, Cardenas-Cadena SA, Marquez-Salas PA, et al. Diabetic foot ulcers:current advances in antimicrobial therapies and emerging treatments[J]. Antibiotics (Basel), 2019, 8:193.
[58] Malone-Povolny MJ, Maloney SE, Schoenfisch MH. Nitric oxide therapy for diabetic wound healing[J]. Adv Healthc Mater, 2019, 8:e1801210.
[59] Lopes L, Setia O, Aurshina A, et al. Stem cell therapy for diabetic foot ulcers:a review of preclinical and clinical research[J]. Stem Cell Res Ther, 2018, 9:188.
1.陈荣昌, 马晓玉, 徐丽娇, 孙桂波, 孙晓波.灯盏乙素对小鼠糖尿病心肌病的保护作用研究[J]. 药学学报, 2019,54(2): 294-300
2.李先伟, 郝伟, 刘艳, 杨解人.红杉醇对2型糖尿病大鼠主动脉NOX4及eNOS表达的影响[J]. 药学学报, 2014,49(3): 329-336
3.王俊俊, 赵容, 梁继超, 陈勇.厚朴酚对高脂饲料-STZ诱导的糖尿病大鼠血糖血脂及肝脏氧化应激损伤的影响[J]. 药学学报, 2014,49(4): 476-481
4.李颖萌, 范雪梅, 王义明, 梁琼麟, 罗国安.葛根芩连汤对2型糖尿病大鼠的治疗作用及其机制探讨[J]. 药学学报, 2013,48(9): 1415-1421
5.陈祥攀,杨解人,李先伟,郝 伟,刘 艳,张俊秀.红杉醇对2型糖尿病大鼠肝病NADPH氧化酶亚单位p22 phox和p47 phox表达的影响[J]. 药学学报, 2013,48(4): 489-494
6.王琳 李国锋 胡文军 朱晓亮 熊璐琪 邓朝辉.糖尿病大鼠皮肤的组织学改变及其对糖皮质激素药物经皮吸收的影响[J]. 药学学报, 2010,45(1): 114-119
7.陈红艳 王建华 耿 淼 吴向起 严 莉 黄 凯 邵丽勉 杨新波 黄正明.罗布麻提取物对STZ糖尿病大鼠肾损害的防护作用[J]. 药学学报, 2010,45(1): 26-30
8.孙敏;樊宏伟;马宏宇;朱荃.胡黄连总苷对高糖诱导肾小球系膜细胞氧化应激的保护作用[J]. 药学学报, 2007,42(4): 381-385