药学学报, 2020, 55(12): 2827-2833
引用本文:
王越业, 常艳, 魏伟. 巨噬细胞异常代谢在类风湿关节炎病理机制中的作用和研究进展[J]. 药学学报, 2020, 55(12): 2827-2833.
WANG Yue-ye, CHANG Yan, WEI Wei. Research progress on the abnormal metabolism of macrophages in rheumatoid arthritis pathogenesis[J]. Acta Pharmaceutica Sinica, 2020, 55(12): 2827-2833.

巨噬细胞异常代谢在类风湿关节炎病理机制中的作用和研究进展
王越业, 常艳, 魏伟
安徽医科大学临床药理研究所, 抗炎免疫药物教育部重点实验室, 抗炎免疫药物安徽省协同创新中心, 安徽 合肥 230032
摘要:
巨噬细胞在类风湿关节炎(rheumatoid arthritis,RA)发病机制中起重要作用。研究表明,RA巨噬细胞的葡萄糖、胆碱、氨基酸和脂质代谢等发生改变,导致代谢中间物积累,代谢中间物又可作为炎症信号分子加重炎症反应,甚至引起一系列并发症。因此,充分了解RA巨噬细胞的代谢过程可为靶向巨噬细胞治疗RA奠定基础。本文综述了巨噬细胞异常代谢在RA病理机制中的作用,以及靶向巨噬细胞的药物在RA治疗中的研究进展。
关键词:    巨噬细胞      类风湿关节炎      代谢      药物      治疗     
Research progress on the abnormal metabolism of macrophages in rheumatoid arthritis pathogenesis
WANG Yue-ye, CHANG Yan, WEI Wei
Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei 230032, China
Abstract:
Macrophages play an important role in the pathogenesis of rheumatoid arthritis (RA). Previously, studies have shown that changes in the metabolism of glucose, choline, amino acids and lipids in macrophages of patients with RA can lead to the accumulation of metabolic intermediates which can act as inflammatory signaling molecules to aggravate the inflammation and cause complications. Therefore, a full understanding of the metabolic process of macrophages in RA patients will lay the foundation for macrophage-targeted therapy of RA. In this review, not only the role of macrophage abnormal metabolism in the pathogenesis of RA but also the research progress on macrophage-targeted drugs in RA treatment will be discussed.
Key words:    macrophage    rheumatoid arthritis    metabolism    drug    therapy   
收稿日期: 2020-05-09
DOI: 10.16438/j.0513-4870.2020-0708
基金项目: 国家自然科学基金面上项目(81573443,81673444,81973332);安徽省自然科学杰出青年基金项目(170808J10);2016年高校优秀青年人才支持计划重点项目(gxyqZD2016043).
通讯作者: 魏伟,Tel:86-551-65161209,Fax:86-551-65161208,E-mail:wwei@ahmu.edu.cn;常艳,E-mail:yychang@ahmu.edu.cn
Email: wwei@ahmu.edu.cn;yychang@ahmu.edu.cn
相关功能
PDF(704KB) Free
打印本文
0
作者相关文章
王越业  在本刊中的所有文章
常艳  在本刊中的所有文章
魏伟  在本刊中的所有文章

参考文献:
[1] Mcinnes IB, Schett G. Pathogenetic insights from the treatment of rheumatoid arthritis[J]. Lancet, 2017, 389:2328-2337.
[2] Udalova IA, Mantovani A, Feldmann M. Macrophage heterogeneity in the context of rheumatoid arthritis[J]. Nat Rev Rheumatol, 2016, 12:472-485.
[3] Culemann S, Grüneboom A, Nicolás-Ávila JÁ, et al. Locally renewing resident synovial macrophages provide a protective barrier for the joint[J]. Nature, 2019, 572:670-675.
[4] Tu JJ, Hong WM, Guo YW, et al. Ontogeny of synovial macrophages and the roles of synovial macrophages from different origins in arthritis[J]. Front Immunol, 2019, 10:1146-1155.
[5] Hua S, Dias TH. Hypoxia-inducible factor (HIF) as a target for novel therapies in rheumatoid arthritis[J]. Front Pharmacol, 2016, 7:184-192.
[6] O'neill LJ, Pearce EJ. Immunometabolism governs dendritic cell and macrophage function[J]. J Exp Med, 2016, 213:15-23.
[7] El Kasmi KC, Stenmark KR. Contribution of metabolic reprogramming to macrophage plasticity and function[J]. Semin Immunol, 2015, 27:267-275.
[8] Jha AK, Huang SC, Sergushichev A, et al. Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization[J]. Immunity, 2015, 42:419-430.
[9] Anthony PH, Kevin PC, Anthony JF, et al. Expression of hypoxia-inducible factor 1alpha by macrophages in the rheumatoid synovium:implications for targeting of therapeutic genes to the inflamed joint[J]. Arthritis Rheum, 2001, 44:1540-1544.
[10] Shirai T, Nazarewicz RR, Wallis BB, et al. The glycolytic enzyme PKM2 bridges metabolic and inflammatory dysfunction in coronary artery disease[J]. J Exp Med, 2016, 213:337-354.
[11] Westra J, Brouwer E, Van Roosmalen IA, et al. Expression and regulation of HIF-1alpha in macrophages under inflammatory conditions; significant reduction of VEGF by CaMKⅡ inhibitor[J]. BMC Musculoskelet Disord, 2010, 11:61-71.
[12] Cramer T, Yamanishi Y, Clausen B. HIF-1α is essential for myeloid cell-mediated inflammation[J]. Cell, 2003, 112:645-657.
[13] Bae S, Kim H, Lee N, et al. α-Enolase expressed on the surfaces of monocytes and macrophages induces robust synovial inflammation in rheumatoid arthritis[J]. J Immunol, 2012, 189:365-372.
[14] Weyand CM, Zeisbrich M, Goronzy JJ. Metabolic signatures of T-cells and macrophages in rheumatoid arthritis[J]. Curr Opin Immunol, 2017, 46:112-120.
[15] Michelucci A, Cordes T, Ghelfi J, et al. Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production[J]. Proc Natl Acad Sci U S A, 2013, 110:7820-7825.
[16] Lampropoulou V, Sergushichev A, Bambouskova M, et al. Itaconate links inhibition of succinate dehydrogenase with macrophage metabolic remodeling and regulation of inflammation[J]. Cell Metab, 2016, 24:158-166.
[17] Kim S, Hwang J, Xuan J, et al. Global metabolite profiling of synovial fluid for the specific diagnosis of rheumatoid arthritis from other inflammatory arthritis[J]. PLoS One, 2014, 9:e97501-e97509.
[18] Littlewood-Evans A, Sarret S, Apfel V, et al. GPR91 senses extracellular succinate released from inflammatory macrophages and exacerbates rheumatoid arthritis[J]. J Exp Med, 2016, 213:1655-1662.
[19] Beckmann J, Schubert J, Morhenn HG, et al. Expression of choline and acetylcholine transporters in synovial tissue and cartilage of patients with rheumatoid arthritis and osteoarthritis[J]. Cell Tissue Res, 2014, 359:465-477.
[20] Sanchez-Lopez E, Zhong Z, Stubelius A, et al. Choline uptake and metabolism modulate macrophage IL-1β and IL-18 production[J]. Cell Metab, 2019, 29:1350-1362.e7.
[21] Snider SA, Margison KD, Ghorbani P, et al. Choline transport links macrophage phospholipid metabolism and inflammation[J]. J Biol Chem, 2018, 293:11600-11611.
[22] Glunde K, Bhujwalla ZM, Ronen SM. Choline metabolism in malignant transformation[J]. Nat Rev Cancer, 2011, 11:835-848.
[23] Guma M, Sanchez-Lopez E, Lodi A, et al. Choline kinase inhibition in rheumatoid arthritis[J]. Ann Rheum Dis, 2015, 74:1399-1407.
[24] Hellberg S, Silvola JMU, Kiugel M, et al. Type 2 diabetes enhances arterial uptake of choline in atherosclerotic mice:an imaging study with positron emission tomography tracer 18F-fluoromethylcholine[J]. Cardiovasc Diabetol, 2016, 15:26-38.
[25] Rodriguez AE, Ducker GS, Billingham LK, et al. Serine metabolism supports macrophage IL-1β production[J]. Cell Metab, 2019, 29:1003-1011e4.
[26] Saha S, Shalova IN, Biswas SK. Metabolic regulation of macrophage phenotype and function[J]. Immunol Rev, 2017, 280:102-111.
[27] Sanchez-Lopez E, Cheng A, Guma M. Can metabolic pathways be therapeutic targets in rheumatoid arthritis?[J]. J Clin Med, 2019, 8:753-775.
[28] Yoon BR, Oh YJ, Kang SW, et al. Role of SLC7A5 in metabolic reprogramming of human monocyte/macrophage immune responses[J]. Front Immunol, 2018, 9:53-67.
[29] Papathanassiu AE, Ko JH, Imprialou M, et al. BCAT1 controls metabolic reprogramming in activated human macrophages and is associated with inflammatory diseases[J]. Nat Commun, 2017, 8:16040-16052.
[30] Hahn BH, Grossman J, Ansell BJ, et al. Altered lipoprotein metabolism in chronic inflammatory states:proinflammatory high-density lipoprotein and accelerated atherosclerosis in systemic lupus erythematosus and rheumatoid arthritis[J]. Arthritis Res Ther, 2008, 10:213-224.
[31] Montecucco F, Mach F. Common inflammatory mediators orchestrate pathophysiological processes in rheumatoid arthritis and atherosclerosis[J]. Rheumatology (Oxford), 2009, 48:11-22.
[32] Kiss M, Czimmerer Z, Nagy L. The role of lipid-activated nuclear receptors in shaping macrophage and dendritic cell function:from physiology to pathology[J]. J Allergy Clin Immunol, 2013, 132:264-286.
[33] Wen W, He M, Liang X, et al. Accelerated transformation of macrophage-derived foam cells in the presence of collagen-induced arthritis mice serum is associated with dyslipidemia[J]. Autoimmunity, 2016, 49:115-123.
[34] Vats D, Mukundan L, Odegaard JI, et al. Oxidative metabolism and PGC-1β attenuate macrophage-mediated inflammation[J]. Cell Metab, 2006, 4:13-24.
[35] Chen Z, Bozec A, Ramming A, et al. Anti-inflammatory and immune-regulatory cytokines in rheumatoid arthritis[J]. Nat Rev Rheumatol, 2019, 15:9-17.
[36] Zhang LL, Wei W. Research progress of drugs for treating autoimmune diseases[J]. Chin Pharmacol Bull (中国药理学通报), 2019, 35:149-156.
[37] Pang Z, Wang G, Ran N, et al. Inhibitory effect of methotrexate on rheumatoid arthritis inflammation and comprehensive metabolomics analysis using ultra-performance liquid chromatography-quadrupole time of flight-mass spectrometry (UPLC-Q/TOF-MS)[J]. Int J Mol Sci, 2018, 19:2894-2916.
[38] Burmester GR, Mcinnes IB, Kremer J, et al. A randomised phase Ⅱb study of mavrilimumab, a novel GM-CSF receptor alpha monoclonal antibody, in the treatment of rheumatoid arthritis[J]. Ann Rheum Dis, 2017, 76:1020-1030.
[39] Behrens F, Tak PP, Ostergaard M, et al. MOR103, a human monoclonal antibody to granulocyte-macrophage colony-stimulating factor, in the treatment of patients with moderate rheumatoid arthritis:results of a phase Ib/Ⅱa randomised, double-blind, placebo-controlled, dose-escalation trial[J]. Ann Rheum Dis, 2015, 74:1058-1064.
[40] Onuora S. Namilumab improves RA symptoms[J]. Nat Rev Rheumatol, 2019, 15:318.
[41] Crotti C, Biggioggero M, Becciolini A, et al. Mavrilimumab:a unique insight and update on the current status in the treatment of rheumatoid arthritis[J]. Expert Opin Investig Drugs, 2019, 28:573-581.
[42] Siouti E, Andreakos E. The many facets of macrophages in rheumatoid arthritis[J]. Biochem Pharmacol, 2019, 165:152-169.
[43] Mertens M, Singh JA. Anakinra for rheumatoid arthritis[J]. Cochrane Database Syst Rev, 2009, (1):CD005121.
[44] Rubbert-Roth A, Furst DE, Nebesky JM, et al. A review of recent advances using tocilizumab in the treatment of rheumatic diseases[J]. Rheumatol Ther, 2018, 5:21-42.
[45] Paniagua RT, Robinson WH. Imatinib for the treatment of rheumatic diseases[J]. Nat Clin Pract Rheumatol, 2007, 3:190-191.
[46] Tebib J, Mariette X, Bourgeois P, et al. Masitinib in the treatment of active rheumatoid arthritis:results of a multicentre, open-label, dose-ranging, phase 2a study[J]. Arthritis Res Ther, 2009, 11:R95-R106.
[47] Tak PP, Balanescu A, Tseluyko V, et al. Chemokine receptor CCR1 antagonist CCX354-C treatment for rheumatoid arthritis:CARAT-2, a randomised, placebo controlled clinical trial[J]. Ann Rheum Dis, 2013, 72:337-344.
[48] Boyle DL, Soma K, Hodge J, et al. The JAK inhibitor tofacitinib suppresses synovial JAK1-STAT signalling in rheumatoid arthritis[J]. Ann Rheum Dis, 2015, 74:1311-1316.
[49] Genovese MC, Kremer J, Zamani O, et al. Baricitinib in patients with refractory rheumatoid arthritis[J]. N Engl J Med, 2016, 374:1243-1252.
[50] Takeuchi T, Tanaka Y, Iwasaki M, et al. Efficacy and safety of the oral Janus kinase inhibitor peficitinib (ASP015K) monotherapy in patients with moderate to severe rheumatoid arthritis in Japan:a 12-week, randomised, double-blind, placebo-controlled phase Ⅱb study[J]. Ann Rheum Dis, 2016, 75:1057-1064.
[51] You H, Xu D, Zhao J, et al. JAK inhibitors:prospects in connective tissue diseases[J]. Clin Rev Allergy Immunol, 2020.DOI:10.1007/s12016-020-08786-6.
[52] Kavanaugh A, Kremer J, Ponce L, et al. Filgotinib (GLPG0634/GS-6034), an oral selective JAK1 inhibitor, is effective as monotherapy in patients with active rheumatoid arthritis:results from a randomised, dose-finding study (DARWIN 2)[J]. Ann Rheum Dis, 2017, 76:1009-1019.
[53] Zhang LL, Wei W. Anti-inflammatory and immunoregulatory effects of paeoniflorin and total glucosides of paeony[J]. Pharmacol Ther, 2020, 207:107452.
[54] Yang CL, Or TC, Ho MH, et al. Scientific basis of botanical medicine as alternative remedies for rheumatoid arthritis[J]. Clin Rev Allergy Immunol, 2013, 44:284-300.
[55] Liu W, Zhang Y, Zhu W, et al. Sinomenine inhibits the progression of rheumatoid arthritis by regulating the secretion of inflammatory cytokines and monocyte/macrophage subsets[J]. Front Immunol, 2018, 9:2228-2248.
[56] Zezina E, Sercan-Alp O, Herrmann M, et al. Glucose transporter 1 in rheumatoid arthritis and autoimmunity[J]. Wiley Interdiscip Rev Syst Biol Med, 2020, 12:e1483-e1498.
[57] Li GQ, Zhang Y, Liu D, et al. PI3 kinase/Akt/HIF-1alpha pathway is associated with hypoxia-induced epithelial-mesenchymal transition in fibroblast-like synoviocytes of rheumatoid arthritis[J]. Mol Cell Biochem, 2013, 372:221-231.
[58] Kato Y, Kasama T, Soejima M, et al. Anti-enolaseantibodies from a patient with systemic lupus erythematosus accompanied by pulmonary arterial hypertension promote migration of pulmonary artery smooth muscle cells[J]. Immunol Lett, 2020, 218:22-29.
[59] Zhao X, Tan F, Cao X, et al. PKM2-dependent glycolysis promotes the proliferation and migration of vascular smooth muscle cells during atherosclerosis[J]. Acta Biochim Biophys Sin (Shanghai), 2020, 52:9-17.
[60] Chen H, Pan T, Liu P, et al. Baihu Jia Guizhi Decoction improves rheumatoid arthritis inflammation by regulating succinate/SUCNR1 metabolic signaling pathway[J]. Evid Based Complement Alternat Med, 2019, 2019:3258572.
[61] Seki M, Kawai Y, Ishii C, et al. Functional analysis of choline transporters in rheumatoid arthritis synovial fibroblasts[J]. Mod Rheumatol, 2017, 27:995-1003.
[62] Yu Z, Lin W, Rui Z, et al. Fibroblast-like synoviocyte migration is enhanced by IL-17-mediated overexpression of L-type amino acid transporter 1(LAT1) via the mTOR/4E-BP1 pathway[J]. Amino Acids, 2018, 50:331-340.
[63] Chang Y, Wei W. Progress in research of Trp-IDO1,2/TDO2-Kyn metabolic pathway in the pathogenesis of rheumatoid arthritis[J]. Acta Pharm Sin (药学学报), 2019, 54:1547-1553.
相关文献:
1.郑蓉蓉, 赵林平, 陈华清, 李仕颖, 余细勇.肿瘤微环境响应的仿生金属纳米粒用于光动力学治疗的研究[J]. 药学学报, 2020,55(7): 1672-1679
2.周燕, 武新安, 邓毅.药物转运体与代谢酶间的协作关系对肠肝药物处置的影响[J]. 药学学报, 2020,55(8): 1762-1767
3.胥海婷, 吴亿晗, 石金凤, 李佳鑫, 章津铭, 傅超美.基于纳米共载策略的光热治疗联合化疗抗肿瘤研究进展[J]. 药学学报, 2020,55(8): 1774-1783
4.余芸, 蔡伟伟, 周静, 魏芳.代谢重编程调控巨噬细胞极化及其在类风湿关节炎中的作用[J]. 药学学报, 2020,55(9): 2027-2034
5.王相宜, 张锦, 李燕, 贺玖明.肿瘤代谢调控与肿瘤免疫治疗以及代谢分析方法研究进展[J]. 药学学报, 2020,55(9): 2080-2091
6.汪泓, 徐进, 尹红锐, 徐明明, 凌今, 郭怀祖, 邵泓, 陈钢.多属性分析方法应用于治疗类抗体药物质量控制的考量与前景[J]. 药学学报, 2020,55(9): 2092-2098
7.李超群, 汤红霞, 张悦, 宋倩倩, 陈凤英, 费伟东.铁死亡诱导型纳米药物的构建及抗肿瘤研究进展[J]. 药学学报, 2020,55(9): 2099-2109
8.张森, 赵晓悦, 梁宇, 李莎, 杜冠华.帕金森病致病因素及发病机制研究进展[J]. 药学学报, 2020,55(10): 2264-2272
9.孙月梅, 张雅婷, 张娟红, 李雪, 王荣, 李文斌.药物微生物组学研究进展[J]. 药学学报, 2020,55(10): 2314-2321
10.刘蕾, 游云, 廖福龙.剪切诱导血小板聚集机制及其治疗进展[J]. 药学学报, 2020,55(11): 2501-2509
11.任强, 张陆勇, 李政.抗器官纤维化药物研究进展[J]. 药学学报, 2020,55(11): 2510-2528
12.潘露露, 钟大放.抗新型冠状病毒肺炎(COVID-19)药物的代谢和药动学[J]. 药学学报, 2020,55(11): 2570-2579
13.谢春阳, 王秀坤, 游雪甫.治疗脓毒症药物研究进展[J]. 药学学报, 2020,55(3): 413-420
14.张婷, 刘晶, 丁娅.谷氨酰胺代谢相关靶点在肿瘤治疗中的研究进展[J]. 药学学报, 2020,55(5): 813-820
15.安南, 陈子琦, 黄敏.血管内皮细胞代谢与肿瘤血管新生研究进展[J]. 药学学报, 2020,55(7): 1373-1381
16.朱雨雨, 宋承霖, 孙洋.银屑病发病机制及药物调控研究进展[J]. 药学学报, 2020,55(7): 1393-1400
17.周雯敏, 郭乔如, 王会, 吴增宝, 张建业.慢性阻塞性肺疾病转化为肺癌的研究进展[J]. 药学学报, 2020,55(7): 1410-1418
18.胡川, 高会乐.肿瘤微环境响应性与调节性递药系统研究进展[J]. 药学学报, 2020,55(7): 1520-1527
19.阴奇材, 陈聪聪, 田俊生, 高晓霞, 秦雪梅, 杜冠华, 周玉枝.基于UPLC-QE-Orbitrap-MS技术的柴胡-白芍药对血清药物化学分析[J]. 药学学报, 2019,54(12): 2296-2302
20.余露山, 毕惠嫦, 吴宝剑, 葛广波, 郑江, 乔海灵, 曾苏.2018年中国药物代谢研究进展[J]. 药学学报, 2019,54(6): 963-970
21.张佳, 赵婷, 敦洁宁, 孙明贤, 黄荣荣, 向柏, 白靖, 曹德英.门控型药物递送系统研究进展[J]. 药学学报, 2019,54(6): 1017-1025
22.尚芳红, 俸珊, 陈乾, 陈先进, 徐晓玉.加味佛手散胶囊体外体内对大鼠肝脏CYP450酶活性的影响[J]. 药学学报, 2019,54(6): 1101-1107
23.徐叶, 杜江波, 冯慧瑾, 左建平, 许红涛, 李援朝, 钟大放.雷公藤甲素衍生物雷腾舒的体外代谢研究[J]. 药学学报, 2019,54(8): 1484-1492
24.卫璐戈, 王肖辉, 牛明, 刘晓熠, 涂灿, 周元园, 胡黄婉茵, 张雅铭, 李会芳, 邹正升, 肖小河, 王伽伯.慢性药物性肝损伤相关肝硬化的代谢组学诊断标志物研究[J]. 药学学报, 2019,54(8): 1449-1456
25.单天姣, 孙健, 梁海海.细胞衰老与器官纤维化研究进展[J]. 药学学报, 2019,54(9): 1531-1537
26.常艳, 魏伟.Trp-IDO1,2/TDO2-Kyn代谢通路介导类风湿关节炎的研究进展[J]. 药学学报, 2019,54(9): 1547-1553
27.袁世睿, 祁小乐, 秦晨, 吴正红.铁蛋白纳米笼用于药物递送系统的研究进展[J]. 药学学报, 2019,54(9): 1574-1581
28.刘金宜, 任利文, 李莎, 唐琴, 李婉, 郑湘锦, 王金华, 杜冠华.肿瘤免疫和代谢药物靶点研究进展[J]. 药学学报, 2019,54(10): 1718-1727
29.候博, 王当歌, 高晶, 王晖, 李亚平, 于海军.微环境激活型纳米递药系统用于肿瘤免疫治疗的研究进展[J]. 药学学报, 2019,54(10): 1802-1809
30.魏紫奕, 徐文娟, 董姣姣, 刘洁, 贾志鑫, 陈奕君, 王明霞, 阳娇, 肖红斌.羟基红花黄色素A对动脉粥样硬化早期脂肪酸的调控研究[J]. 药学学报, 2018,53(10): 1680-1688
31.周丹丹, 余娇娇, 花芳, 胡卓伟.巨噬细胞迁移抑制因子,连接炎症和肿瘤的关键蛋白[J]. 药学学报, 2018,53(11): 1761-1769
32.姜金方, 李秀立, 陈笑艳, 钟大放.肝脏和肠道酯酶在药物代谢及新药研发中的作用[J]. 药学学报, 2018,53(2): 177-185
33.王蕊, 姜剑伟, 李燕.哺乳动物羧酸酯酶在药物代谢中的作用[J]. 药学学报, 2018,53(2): 186-191
34.徐祥清, 王克威.孤独症谱系障碍的药物治疗研究进展[J]. 药学学报, 2018,53(3): 321-327
35.杨雅坤, 盛莉, 李燕.黄素单氧化酶在药物代谢和新药研发中的作用[J]. 药学学报, 2017,52(10): 1485-1495
36.赵晨曦, 胡卓伟, 崔冰.单克隆抗体药物研究进展[J]. 药学学报, 2017,52(6): 837-847
37.乔一杰, 辛元尧, 周雪姣, 杨梦, 李向阳.辐射影响药物代谢的研究进展[J]. 药学学报, 2017,52(6): 871-878
38.庞晶, 胡辛欣, 王跃明, 李聪然, 杨信怡, 刘宗英, 胡来兴, 宋丹青, 李卓荣, 游雪甫, 蒋建东.新型抗肿瘤微管抑制剂IG-105的体外代谢及药物相互作用的研究[J]. 药学学报, 2017,52(6): 921-927
39.孙漩嵘, 张隆超, 施绮雯, 李汉兵, 赵航.细胞-纳米药物递送系统的研究进展[J]. 药学学报, 2017,52(7): 1110-1116
40.张峰, 秦雪梅, 杜冠华, 高晓霞.抗抑郁药物的体内代谢研究进展[J]. 药学学报, 2017,52(12): 1791-1800
41.周权, 余露山, 曾苏.基于药物代谢酶和转运体基因组学的药物精准治疗[J]. 药学学报, 2017,52(1): 1-7
42.唐嘉婧, 梅凌, 余倩雯, 何勤.载吲哚菁绿和多柔比星自组装胶束的构建及体外抗肿瘤及其转移的评价[J]. 药学学报, 2017,52(12): 1933-1941
43.彭英, 马飞, 许婷婷, 王珊, 黄龙舰, 王晓英, 王拥军, 王晓良.缺血性卒中药物临床前研究的挑战及其对策[J]. 药学学报, 2017,52(3): 339-346
44.冯倩茹, 余捷婧, 詹晶晶, 许艺镌, 周若龙, 许舜军, 杨柳.喘可治注射液在大鼠体内的药物代谢研究[J]. 药学学报, 2017,52(3): 449-455
45.赵奕, 邵华, 张学丽, 于锋.外周5-羟色胺调控能量代谢的研究进展[J]. 药学学报, 2017,52(5): 706-712
46.王钰洁, 曹鑫, 刘小宇, 卢小玲, 李玉艳, 焦炳华.抗体偶联药物设计及临床研究进展[J]. 药学学报, 2016,51(8): 1209-1216
47.尹晓兰, 张波, 刘永军, 张娜.聚合物药物结合物胶束在抗肿瘤药物递送方面的研究进展[J]. 药学学报, 2016,51(5): 710-716
48.张梓倩, 盛莉, 李燕.药物的葡萄糖醛酸化与脑内过程[J]. 药学学报, 2016,51(11): 1674-1680
49.吴祥猛, 盛莉, 贾雨霏, 李燕.乳腺癌耐药蛋白在药物代谢动力学中的作用[J]. 药学学报, 2016,51(9): 1368-1377
50.陈淑珍.和厚朴酚的抗肿瘤实验治疗及其分子作用靶点的研究进展[J]. 药学学报, 2016,51(2): 202-207
51.姜金方, 陈笑艳, 钟大放.我国研发的小分子酪氨酸激酶抑制剂的药物代谢研究[J]. 药学学报, 2016,51(2): 248-256
52.贾永明, 刘志浩, 刘克辛.白藜芦醇对药物转运体和代谢酶影响的研究进展[J]. 药学学报, 2016,51(6): 860-865
53.丁寄葳, 赵建元, 米泽云, 魏涛, 岑山.HIV-1初始传播病毒药物敏感性研究[J]. 药学学报, 2016,51(3): 367-372
54.梁鸽, 陆又铭, 戴晓健, 秦民坚, 钟大放, 陈笑艳.LC-MS/MS法测定犬血浆中他喷他多并评价结合型代谢物对测定的影响[J]. 药学学报, 2016,51(3): 434-438
55.杨波, 王静, 丛宇婷, 胡良海, 顾景凯.基于蛋白质组学的药物代谢酶与转运体定量分析研究进展[J]. 药学学报, 2015,50(6): 668-674
56.张娟玲, 李向阳.高原低氧影响药物代谢的研究进展[J]. 药学学报, 2015,50(9): 1073-1079
57.孙玉, 黄蓉, 孙柏旺.位点专一的抗体-药物偶联物的研究进展[J]. 药学学报, 2015,50(10): 1225-1231
58.赵芊, 扈金萍, 江骥, 李燕, 胡蓓.丁苯酞与大鼠和人肝CYP450同工酶的相互作用[J]. 药学学报, 2015,50(5): 541-546
59.肖文璟, 王广基, 阿基业.肿瘤细胞中药物代谢酶表达和活性的研究与进展[J]. 药学学报, 2014,49(10): 1377-1386
60.米家琦, 李燕.醛氧化酶的研究进展[J]. 药学学报, 2014,49(5): 582-589
61.黄青, 阿基业, 周国华.基于药物代谢组学的个体化医疗研究进展[J]. 药学学报, 2014,49(11): 1491-1497
62.陈淑珍, 甄永苏.茶多酚的分子作用靶点及其在抗肿瘤药物实验治疗中的作用[J]. 药学学报, 2013,48(1): 1-7
63.武临专, 洪 斌.微生物药物合成生物学研究进展[J]. 药学学报, 2013,48(2): 155-160
64.陈伟光, 王士斌.纳米载体共载基因与化疗药物用于癌症治疗的研究进展[J]. 药学学报, 2013,48(7): 1091-1098
65.赵龙山, 李 清, 郭超伟, 陈晓辉, 毕开顺.质谱联用技术在生物样品分析中的应用[J]. 药学学报, 2012,47(2): 158-162
66.陈伟光, 刘源岗, 王士斌, 陈爱政.阳离子脂质体共载基因与化疗药物用于癌症治疗的研究进展[J]. 药学学报, 2012,47(8): 986-992
67.苗庆芳, 邵荣光, 甄永苏.抗肿瘤抗体药物研究进展[J]. 药学学报, 2012,47(10): 1261-1268
68.汤 沁, 丁 倩, 林 莉, 张珍珍, 代 争, 詹金彪.针对HER2靶点的抗体药物研究与肿瘤靶向治疗[J]. 药学学报, 2012,47(10): 1297-1305
69.刘 泉 刘率男 李林忆 陈致瑜 雷 蕾 张 宁 申竹芳.泊洛沙姆407诱发金黄地鼠脂质代谢紊乱模型及其初步机制[J]. 药学学报, 2011,46(4): 406-411
70.邓晨辉 张关敏 毕姗姗 周田彦 卢炜.中国肾移植患者他克莫司治疗药物监测网络平台的研制开发[J]. 药学学报, 2011,46(7): 828-833
71.胡冰芳 毕惠嫦 黄民.孕烷X受体及组成性雄甾烷受体的研究新进展[J]. 药学学报, 2011,46(10): 1173-1177
72.张兴权.抗艾滋病毒化疗药物的最新进展[J]. 药学学报, 2010,45(2): 194-204
73.张 浩 邵荣光.G3BP: 一个潜在的肿瘤治疗靶点[J]. 药学学报, 2010,45(8): 945-951
74.孙玉 于菲 孙柏旺.靶向癌症治疗试剂——抗体-药物偶联物(英文)[J]. 药学学报, 2009,44(9): 943-952
75.张丽芳 胡 晓 王 萍 张 磊.蛇床子素在大鼠肝细胞代谢的体外研究[J]. 药学学报, 2009,44(10): 1131-1135
76.谢 彤 梁 艳 郝海平 谢 林 王广基.葡萄糖醛酸转移酶 (UGTs) 诱导羧酸药物代谢激活的研究进展[J]. 药学学报, 2009,44(11): 1193-1199
77.许金霞 唐建斌 赵鲁杭 申有青.肿瘤pH响应的聚合物胶束用于肿瘤药物靶向输送的研究进展[J]. 药学学报, 2009,44(12): 1328-1335
78.盛莉;扈金萍;陈晖;李燕.硝克柳胺在大鼠和人肝脏的体外代谢研究[J]. 药学学报, 2008,43(9): 912-916
79.应景艳;顾少君;姚彤炜.木犀草素(苷)与药物代谢酶相互作用的研究进展[J]. 药学学报, 2008,43(4): 335-342
80.关凤英;杨世杰.抗心律失常药物作用的靶点——HERG K+通道[J]. 药学学报, 2007,42(7): 687-691
81.张倩;王广基.药物代谢清除率体外预测模型研究进展与问题分析[J]. 药学学报, 2007,42(10): 1023-1028
82.吴娟芳;陈令新;罗国安;王义明.毛细管电泳技术在药物分析中的应用研究进展[J]. 药学学报, 2006,41(5): 385-389
83.马广立;程翼宇.口服药物生物利用度预测研究进展[J]. 药学学报, 2006,41(10): 917-920
84.林立红2;黄海华;张鹏2;钟大放1.短刺小克银汉霉AS 3.910的CYP2C9同工酶抑制作用[J]. 药学学报, 2006,41(10): 967-972
85.鲁鑫焱;蒋惠娣;曾苏.黄酮类化合物在原代肝细胞上的代谢和药物相互作用研究进展[J]. 药学学报, 2006,41(12): 1130-1135
86.王宇光;王升启;高月.PXR受体调控的CYP3A诱导及其在药物代谢中的重要意义[J]. 药学学报, 2006,41(1): 1-1
87.胡庆伟;刘耕陶.抗肝纤维化药物研究的进展[J]. 药学学报, 2006,41(1): 7-7
88.周四元;梅其炳;王汝涛;王庆伟;杨志福;王四旺.染料木黄酮在Beagle犬体内代谢动力学的剂量依赖性研究[J]. 药学学报, 2005,40(6): 553-556
89.苏成业.P-糖蛋白在药物代谢动力学中的作用及其临床意义[J]. 药学学报, 2005,40(8): 673-679
90.徐旻;林东海;刘昌孝.代谢组学研究现状与展望[J]. 药学学报, 2005,40(9): 769-774
91.杨志福;周四元;杨铁虹;梅其炳;.间硝苯地平在Beagle犬体内的药代动力学[J]. 药学学报, 2004,39(8): 609-612
92.孙江浩;张兰桐;王春英;袁志芳;卢兴红.液-质联用法测定小鼠体内二苯乙烯苷代谢物液-质联用法测定小鼠体内二苯乙烯苷代谢物[J]. 药学学报, 2003,38(12): 968-970
93.李晓海;张金兰;周同惠.左旋一叶碱的代谢转化[J]. 药学学报, 2002,37(4): 288-293
94.丁平田;徐晖;郑俊民.微渗析技术在药代动力学和药物代谢研究中的应用[J]. 药学学报, 2002,37(4): 316-320
95.姚彤炜;胡云珍.地非三唑的RP-HPLC法测定及其体外代谢研究[J]. 药学学报, 2002,37(6): 458-461
96.华允芬;明镇寰;张铭.药物基因组学研究进展[J]. 药学学报, 2002,37(8): 668-672
97.李晓海;张金兰;周同惠.一叶萩碱的高效毛细管电泳手性分离及其大鼠体内立体选择性代谢研究[J]. 药学学报, 2002,37(1): 50-53
98.丁黎;张正行;安登魁;倪沛洲;王广基;.LC/DAD/MSD技术研究大鼠服药胆汁中盐酸非洛普I相代谢产物[J]. 药学学报, 2001,36(3): 205-209
99.王金辉;李铣.拟人参皂苷F11在大鼠体内的药物代谢研究[J]. 药学学报, 2001,36(6): 427-431
100.雷厉;宋志宏;李寅增;屠鹏飞;吴立军;陈发奎;.管花肉苁蓉苯乙醇总苷在狗胃肠道内的生物转化[J]. 药学学报, 2001,36(6): 432-435
101.丁黎;张正行;倪沛洲;王广基;安登魁;.LC/DAD/MSD技术研究大鼠胆汁中盐酸非洛普的II相代谢产物[J]. 药学学报, 2001,36(6): 440-443
102.张金兰;刘颖;周同惠.微透析取样技术在药物代谢研究中的应用及前景[J]. 药学学报, 2001,36(7): 555-558
103.徐海燕;钟大放;肇丽梅;张逸凡;张宝军;.美洛昔康在中国健康受试者体内的药物动力学研究[J]. 药学学报, 2001,36(1): 71-73
104.常雁;再帕尔.阿不力孜;王慕邹.串联质谱新技术及其在药物代谢研究中的应用进展[J]. 药学学报, 2000,35(1): 73-78
105.赵冬梅;李燕;卢业竑.药物代谢研究在新药开发中的作用[J]. 药学学报, 2000,35(2): 156-160
106.杜宗敏;黄海华;陈笑艳;钟大放.人尿中苯丙哌林羟基化代谢产物的研究[J]. 药学学报, 2000,35(12): 916-920
107.丁黎;高凌;王广基;张正行;安登魁.人血浆中尼莫地平的毛细管气相色谱电子捕获检测法及药代动力学[J]. 药学学报, 1999,34(2): 135-138
108.李英;刘克良;恽榴红.肽核酸研究进展[J]. 药学学报, 1999,34(3): 235-240
109.司伊康;杨春;孔漫;徐瑞明;张守仁;贺文义.固相萃取—核磁氢谱法研究曲美布汀的代谢产物[J]. 药学学报, 1999,34(5): 376-378
110.王春华;冯亦璞;吴元鎏.丁基苯酞在大鼠中代谢产物的研究[J]. 药学学报, 1997,32(9): 641-646
111.龙超峰;张远;楼雅卿.利福平及异烟肼对家兔体内地西泮药代动力学的影响[J]. 药学学报, 1997,32(7): 481-484
112.申利;徐友宣;张长久;吴筠;王杉;崔凯荣.人体液中喷布洛尔及其代谢物的GC/MS分析[J]. 药学学报, 1995,30(9): 702-705
113.崔建芳;李临;崔凯荣;周屹;李农;王慕邹;周同惠.刺激剂类药物及代谢物的分离鉴定[J]. 药学学报, 1993,28(6): 455-463
114.王文杰;白金叶;朱秀媛.血浆甘磷酰芥及代谢物的测定方法和大鼠口服药代动力学[J]. 药学学报, 1993,28(10): 738-743
115.何跃生;路红莉;王殿英;何绍雄.氢化阿托酸在大鼠体内立体选择性时间药代动力学[J]. 药学学报, 1993,28(12): 893-898
116.崔燕岩;王慕邹.五味子醇甲的代谢转化[J]. 药学学报, 1992,27(1): 57-63
117.傅柳松;彭仁琇.苯巴比妥诱导下大鼠肝微粒体药酶活性与膜流动性变化的相关性[J]. 药学学报, 1991,26(8): 567-571
118.曲淑岩;李伟;陈颖莉;孙玉;张艳秋;洪铁.醋柳愈酯的体内代谢及药代动力[J]. 药学学报, 1990,25(9): 664-669
119.董善年;白芳;杨慧君;楼雅卿;梁伟升.抗痫灵在大鼠肝脏中代谢的研究[J]. 药学学报, 1989,24(4): 241-245
120.王文杰;仪明光;朱秀媛.3H-紫草素的吸收、组织分布和排泄[J]. 药学学报, 1988,23(4): 246-251
121.姜玲敏;李雅雅;叶远福;郑太轩;刘萍;高志军.反相高效液相色谱法研究家兔体内利福定对地塞米松代谢动力学的影响[J]. 药学学报, 1988,23(8): 633-635
122.刘志强;蔡勇;焦健;陈忆庭;林志英.一种新的多环芳烃型药物代谢酶诱导剂—抗早孕药DL-111-IT[J]. 药学学报, 1987,22(8): 575-579
123.孙阳;陈琼华.中药大黄的生化学研究——ⅩⅥ.大黄素甲醚在动物体代谢产物的分离和鉴定[J]. 药学学报, 1986,21(10): 748-752
124.伍英;金辉;刘耀祥.安坦对氯丙嗪在肝微粒体中代谢速率的影响[J]. 药学学报, 1984,19(2): 96-100
125.谢明智;申竹芳.隐丹参酮的吸收、分布、排泄和代谢[J]. 药学学报, 1983,18(2): 90-96
126.曲淑岩;毋英杰;王一华;左玉霞.瑞香素的代谢及药代动力学[J]. 药学学报, 1983,18(7): 496-500
127.王晓良;仪明光;刘忠敏;宋振玉.联苯双酯的吸收、分布、代谢和排泄[J]. 药学学报, 1983,18(12): 892-899
128.杨友春.给药间隔非恒定时单隔室药物代谢动力学的有关计算公式[J]. 药学学报, 1982,17(6): 413-420
129.孙漩嵘, 张隆超, 施绮雯, 李汉兵, 赵航.细胞-纳米药物递送系统的研究进展[J]. 药学学报,