药学学报, 2020, 55(12): 2834-2842
引用本文:
石素梅, 房元英, 刘荣华, 杨尊华. G蛋白偶联受体119激动剂的研究进展[J]. 药学学报, 2020, 55(12): 2834-2842.
SHI Su-mei, FANG Yuan-ying, LIU Rong-hua, YANG Zun-hua. Recent advances in G protein coupled receptor 119 agonists[J]. Acta Pharmaceutica Sinica, 2020, 55(12): 2834-2842.

G蛋白偶联受体119激动剂的研究进展
石素梅, 房元英, 刘荣华, 杨尊华
江西中医药大学药学院, 江西 南昌 330004
摘要:
G蛋白偶联受体119(GPR119)是治疗2型糖尿病有希望的靶点,它既可以直接促进胰岛素的分泌,也能够通过刺激葡萄糖依赖性GIP/CLP-1的释放间接增加胰岛素的分泌,而不引起低血糖。小分子GPR119激动剂具有显著的作用优势,使其成为开发2型糖尿病药物的研究热点之一。本文对近五年基于GPR119靶点的抗糖尿病活性小分子进行综述。
关键词:    G蛋白偶联受体119      G蛋白偶联受体119激动剂      2型糖尿病      低血糖      内在活性     
Recent advances in G protein coupled receptor 119 agonists
SHI Su-mei, FANG Yuan-ying, LIU Rong-hua, YANG Zun-hua
College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
Abstract:
G protein-coupled receptor 119 (GPR119) has been a promising target for the treatment of type 2 diabetes. It can not only directly promote insulin secretion, but also indirectly increase insulin secretion by stimulating the release of glucose-dependent GIP/CLP-1 without causing hypoglycemia. The remarkable advantages of small molecule GPR119 agonists make it one of the research hotspots for the development of type 2 diabetes drugs. This article reviews the anti-diabetic small molecules based on the GPR119 target in the past five years.
Key words:    G protein coupled receptor 119    G protein coupled receptor agonist    type 2 diabetes    hypoglycemia    intrinsic activity   
收稿日期: 2020-08-07
DOI: 10.16438/j.0513-4870.2020-1303
基金项目: 江西省青年科学基金重点项目(20192ACB21012);南昌市天然药物结构修饰和药物合成研究知识创新团队.
通讯作者: 杨尊华,Tel:86-791-87118908,E-mail:joshyyy@126.com
Email: joshyyy@126.com
相关功能
PDF(972KB) Free
打印本文
0
作者相关文章
石素梅  在本刊中的所有文章
房元英  在本刊中的所有文章
刘荣华  在本刊中的所有文章
杨尊华  在本刊中的所有文章

参考文献:
[1] National Diabetes Statistics Report[EB/OL]. United States:Centers for Disease Control and Prevention, 2019[2020-07-29]. https://www.cdc.gov/dotw/diabetes/index.html.
[2] Saeedi P, Petersohn I, Salpea P, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045:results from the International Diabetes Federation Diabetes Atlas, 9(th) edition[J]. Diabetes Res Clin Pract, 2019, 157:107843.
[3] Guidelines for the prevention and control of type 2 diabetes in China (2017 Edition)[J]. Chin J Pract Intern Med (中国实用内科杂志), 2018, 38:292-344.
[4] Hurlow JJ, Humphreys GJ, Bowling FL, et al. Diabetic foot infection:a critical complication[J]. Int Wound J, 2018, 15:814-821.
[5] Juster-Switlyk K, Smith AG. Updates in diabetic peripheral neuropathy[J]. f1000research, 2016, 5. (https://f1000research.com/articles/5-738/v1).
[6] John S. Complication in diabetic nephropathy[J]. Diabetes Metab Syndr, 2016, 10:247-249.
[7] Yu J, Hua F, Hu Z. Advances in the studies of the link between diabetes and cancer[J]. Acta Pharm. Sin (药学学报), 2016, 51:1017-1024.
[8] Wang T, Yin X. Advances in therapeutics of type 2 diabetes mellitus[J]. Prog Pharm Sci (药学进展), 2016, 40:323-330.
[9] Zhang S, Xiong L, Yang Z, et al. Research progress of novel targets for discovery of anti-type 2 diabetes agents[J]. Chin J New Drugs (中国新药杂志), 2019, 28:1718-1726.
[10] Chu ZL, Jones RM, He H, et al. A role for beta-cell-expressed G protein-coupled receptor 119 in glycemic control by enhancing glucose-dependent insulin release[J]. Endocrinology, 2007, 148:2601-2609.
[11] Chu ZL, Carroll C, Alfonso J, et al. A role for intestinal endocrine cell-expressed g protein-coupled receptor 119 in glycemic control by enhancing glucagon-like peptide-1 and glucose-dependent insulinotropic peptide release[J]. Endocrinology, 2008, 149:2038-2047.
[12] Shah U, Kowalski TJ. GPR119 agonists for the potential treatment of type 2 diabetes and related metabolic disorders[J]. Vitam Horm, 2010, 84:415-448.
[13] Soga T, Ohishi T, Matsui T, et al. Lysophosphatidylcholine enhances glucose-dependent insulin secretion via an orphan G-protein-coupled receptor[J]. Biochem Biophys Res Commun, 2005, 326:744-751.
[14] Chu ZL, Carroll C, Chen R, et al. N-Oleoyldopamine enhances glucose homeostasis through the activation of GPR119[J]. Mol Endocrinol, 2010, 24:161-170.
[15] Syed SK, Bui HH, Beavers LS, et al. Regulation of GPR119 receptor activity with endocannabinoid-like lipids[J]. Am J Physiol Endocrinol Metab, 2012, 303:E1469-E1478.
[16] Fyfe MC, McCormack JG, Overton HA, et al. GPR119 agonists as potential new oral agents for the treatment of type 2 diabetes and obesity[J]. Expert Opin Drug Discov, 2008, 3:403-413.
[17] Ritter K, Buning C, Halland N, et al. G Protein-coupled receptor 119(GPR119) agonists for the treatment of diabetes:recent progress and prevailing challenges[J]. J Med Chem, 2016, 59:3579-3592.
[18] Abdel-Magid AF. Treatment of diabetes, obesity, dyslipidemia, and related disorders with GPR119 agonists[J]. ACS Med Chem Lett, 2019, 10:14-15.
[19] Hu YW, Yang JY, Ma X, et al. A lincRNA-DYNLRB2-2/GPR119/GLP-1R/ABCA1-dependent signal transduction pathway is essential for the regulation of cholesterol homeostasis[J]. J Lipid Res, 2014, 55:681-697.
[20] Bahirat UA, Shenoy RR, Goel RN, et al. APD668, a G protein-coupled receptor 119 agonist improves fat tolerance and attenuates fatty liver in high-trans fat diet induced steatohepatitis model in C57BL/6 mice[J]. Eur J Pharmacol, 2017, 801:35-45.
[21] Yang JW, Kim HS, Im JH, et al. GPR119:a promising target for nonalcoholic fatty liver disease[J]. FASEB J, 2016, 30:324-335.
[22] Yang JW, Kim HS, Choi YW, et al. Therapeutic application of GPR119 ligands in metabolic disorders[J]. Diabetes Obes Metab, 2018, 20:257-269.
[23] Chen Z, Wang L, Hu R. Effect of GPR119 on lipid metabolism related gene expression[J]. China Mod Med (中国当代医药), 2017, 24:138-139.
[24] Chen Z, Wang L, Zhong J, et al. Mechanism of GPR119 in regulating lipid metabolism and anti-atherosclerosis by hypoxia-inducible factor-1α/vascular endothelial growth factor pathway[J]. Chin J Endocronol Matab (中华内分泌代谢杂志), 2019, 35:1055-1056.
[25] Kim HJ, Yoon HJ, Park JW, et al. G protein-coupled receptor 119 is involved in RANKL-induced osteoclast differentiation and fusion[J]. J Cell Physiol, 2019, 234:11490-11499.
[26] Kim HJ, Lee DK, Jin X, et al. Oleoylethanolamide exhibits GPR119-dependent inhibition of osteoclast function and GPR119-independent promotion of osteoclast apoptosis[J]. Mol Cells, 2020, 43:340-349.
[27] Im JH, Kang KW, Kim SY, et al. GPR119 agonist enhances gefitinib responsiveness through lactate-mediated inhibition of autophagy[J]. J Exp Clin Cancer Res, 2018, 37:295.
[28] Semple G, Fioravanti B, Pereira G, et al. Discovery of the first potent and orally efficacious agonist of the orphan G-protein coupled receptor 119[J]. J Med Chem, 2008, 51:5172-5175.
[29] Matsumoto K, Yoshitomi T, Ishimoto Y, et al. DS-8500a, an orally available G protein-coupled receptor 119 agonist, upregulates glucagon-like peptide-1 and enhances glucose-dependent insulin secretion and improves glucose homeostasis in type 2 diabetic rats[J]. J Pharmacol Exp Ther, 2018, 367:509-517.
[30] Bahirat UA, Shenoy RR, Talwar R, et al. Co-administration of APD668, a G protein-coupled receptor 119 agonist and linagliptin, a DPPIV inhibitor, prevents progression of steatohepatitis in mice fed on a high trans-fat diet[J]. Biochem Biophys Res Commun, 2018, 495:1608-1613.
[31] ClinicalTrials.gov. The clinical trials of GPR119 agonists[EB/OL]. United States:U.S. National Library of Medicine, 2008[2020-8-1]. https://clinicaltrials.gov/.
[32] Kim JH, Kim Y, Kim R, et al. 1162-P:DA-1241, a novel GPR119 agonist, improves hyperglycaemia by inhibiting hepatic gluconeogenesis and enhancing insulin secretion via stimulation of GLP-1 secretion[J]. Diabetes, 2019. DOI:10.2337/db19-1162-P.
[33] Spasov AA, Kosolapov VA, Babkov DA, et al. Effect of GRP119 receptor agonist, compound MBX-2982, on activity of human glucokinase[J]. Bull Exp Biol Med, 2017, 163:695-698.
[34] Katz LB, Gambale JJ, Rothenberg PL, et al. Effects of JNJ-38431055, a novel GPR119 receptor agonist, in randomized, double-blind, placebo-controlled studies in subjects with type 2 diabetes[J]. Diabetes Obes Metab, 2012, 14:709-716.
[35] Kang SU. GPR119 agonists:a promising approach for T2DM treatment? A SWOT analysis of GPR119[J]. Drug Discov Today, 2013, 18:1309-1315.
[36] Nunez DJ, Bush MA, Collins DA, et al. Gut hormone pharmacology of a novel GPR119 agonist (GSK1292263), metformin, and sitagliptin in type 2 diabetes mellitus:results from two randomized studies[J]. PLoS One, 2014, 9:e92494.
[37] Scheen AJ. Investigational insulin secretagogues for type 2 diabetes[J]. Expert Opin Investig Drugs, 2016, 25:405-422.
[38] Zuo Z, Chen M, Shao X, et al. Design and biological evaluation of tetrahydropyridine derivatives as novel human GPR119 agonists[J]. Bioorg Med Chem Lett, 2020, 30:126855.
[39] Kim H, Cho SJ, Yoo M, et al. Synthesis and biological evaluation of thiazole derivatives as GPR119 agonists[J]. Bioorg Med Chem Lett, 2017, 27:5213-5220.
[40] Harada K, Mizukami J, Watanabe T, et al. Optimization of oxadiazole derivatives with a spirocyclic cyclohexane structure as novel GPR119 agonists[J]. Bioorg Med Chem Lett, 2019, 29:2100-2106.
[41] Bashetti N, Shanmukha KJ, Seelam NV, et al. One-pot synthesis of novel tert-butyl-4-substituted phenyl-1H-1,2,3-triazolo piperazine/piperidine carboxylates, potential GPR119 agonists[J]. Bioorg Med Chem Lett, 2019, 29:126707.
[42] Neelamkavil SF, Stamford AW, Kowalski T, et al. Discovery of MK-8282 as a potent g-protein-coupled receptor 119 agonist for the treatment of type 2 diabetes[J]. ACS Med Chem Lett, 2018, 9:457-461.
[43] Yang Z, Fang Y, Pham TA, et al. Synthesis and biological evaluation of 5-nitropyrimidine analogs with azabicyclic substituents as GPR119 agonists[J]. Bioorg Med Chem Lett, 2013, 23:1519-1521.
[44] Fang Y, Yang Z, Gundeti S, et al. Novel 5-nitropyrimidine derivatives bearing endo-azabicyclic alcohols/amines as potent GPR119 agonists[J]. Bioorg Med Chem, 2017, 25:254-260.
[45] Yang Z, Fang Y, Park H. Synthesis and biological evaluation of pyrimidine derivatives with diverse azabicyclic ether/amine as novel GPR119 agonist[J]. Bioorg Med Chem Lett, 2017, 27:2515-2519.
[46] Harada K, Mizukami J, Watanabe T, et al. Lead generation and optimization of novel GPR119 agonists with a spirocyclic cyclohexane structure[J]. Bioorg Med Chem Lett, 2019, 29:373-379.
[47] Han T, Lee BM, Park YH, et al. YH18968, a novel 1,2,4-triazolone G-protein coupled receptor 119 agonist for the treatment of type 2 diabetes mellitus[J]. Biomol Ther (Seoul), 2018, 26:201-209.
[48] Fang Y, Xu J, Li Z, et al. Design and synthesis of novel pyrimido[5,4-d]pyrimidine derivatives as GPR119 agonist for treatment of type 2 diabetes[J]. Bioorg Med Chem, 2018, 26:4080-4087.
[49] Fang Y, Zhang S, Li M, et al. Optimisation of novel 4, 8-disubstituted dihydropyrimido[5,4-b] [1,4]oxazine derivatives as potent GPR 119 agonists[J]. J Enzyme Inhib Med Chem, 2020, 35:50-58.
[50] Matsuda D, Kobashi Y, Mikami A, et al. Design and synthesis of 1H-pyrazolo[3,4-c]pyridine derivatives as a novel structural class of potent GPR119 agonists[J]. Bioorg Med Chem Lett, 2016, 26:3441-3446.
[51] Matsuda D, Kobashi Y, Mikami A, et al. Novel 3H-[1,2,3]triazolo[4,5-c]pyridine derivatives as GPR119 agonists:synthesis and structure-activity/solubility relationships[J]. Bioorg Med Chem, 2017, 25:4339-4354.
[52] Koshizawa T, Morimoto T, Watanabe G, et al. Optimization of a novel series of potent and orally bioavailable GPR119 agonists[J]. Bioorg Med Chem Lett, 2017, 27:3249-3253.
[53] Liu P, Hu Z, DuBois BG, et al. Design of potent and orally active GPR119 agonists for the treatment of type Ⅱ diabetes[J]. ACS Med Chem Lett, 2015, 6:936-941.
[54] Zhu C, Wang L, Zhu Y, et al. Discovery of phenyl acetamides as potent and selective GPR119 agonists[J]. Bioorg Med Chem Lett, 2017, 27:1124-1128.
[55] Harada K, Mizukami J, Kadowaki S, et al. Design and synthesis of novel and potent GPR119 agonists with a spirocyclic structure[J]. Bioorg Med Chem Lett, 2018, 28:1228-1233.
[56] Tadaki H, Sasase T, Fukuda S, et al. Chronic treatment of JTP-109192, a novel G-protein coupled receptor 119 agonist, improves metabolic abnormalities in Zucker Fatty rats[J]. Clin Exp Pharmacol Physiol, 2019, 46:910-919.
[57] Matsuda D, Kawamura M, Kobashi Y, et al. Design, synthesis and biological evaluation of novel 7-azaspiro[3.5]nonane derivatives as GPR119 agonists[J]. Bioorg Med Chem, 2018, 26:1832-1847.
[58] Kato M, Furuie H, Kamiyama E, et al. Safety and pharmacokinetics of DS-8500a, a novel GPR119 agonist, after multiple oral doses in healthy Japanese males[J]. Clin Drug Investig, 2018, 38:519-525.
[59] Ansarullah, Lu Y, Holstein M, et al. Stimulating beta-cell regeneration by combining a GPR119 agonist with a DPP-IV inhibitor[J]. PLoS One, 2013, 8:e53345.
[60] Park YH, Choi HH, Lee DH, et al. YH18421, a novel GPR119 agonist exerts sustained glucose lowering and weight loss in diabetic mouse model[J]. Arch Pharm Res, 2017, 40:772-782.
[61] Yamada Y, Terauchi Y, Watada H, et al. Efficacy and safety of GPR119 agonist DS-8500a in Japanese patients with type 2 diabetes:a randomized, double-blind, placebo-controlled, 12-week study[J]. Adv Ther, 2018, 35:367-381.
[62] Zhou J, Jiang X, Feng F, et al. Multi-target drug design strategy and its research progress[J]. Acta Pharm. Sin (药学学报), 2018, 53:2012-2025.
[63] Jiang Q, Huan Y, Sun S, et al. Improved effect of novel structure compound SJ001 targeting dual DPP4 and GPR119 on KKAy glucose metabolism disorder in type 2 diabetic mice[C]//The 14th National Conference on Biochemistry and Molecular Pharmacology Proceedings (第十四届全国生化与分子药理学学术会议论文集). Inner Mongolia:Chinese Pharmacological Society, 2015:78.
[64] Li G, Huan Y, Yuan B, et al. Discovery of novel xanthine compounds targeting DPP-IV and GPR119 as anti-diabetic agents[J]. Eur J Med Chem, 2016, 124:103-116.
[65] Huan Y, Jiang Q, Li G, et al. The dual DPP4 inhibitor and GPR119 agonist HBK001 regulates glycemic control and beta cell function ex and in vivo[J]. Sci Rep, 2017, 7:4351.
[66] Fang Y, Zhang S, Wu W, et al. Design and synthesis of tetrahydropyridopyrimidine derivatives as dual GPR119 and DPP-4 modulators[J]. Bioorg Chem, 2020, 94:103390.
[67] Li G, Meng B, Yuan B, et al. The optimization of xanthine derivatives leading to HBK001 hydrochloride as a potent dual ligand targeting DPP-IV and GPR119[J]. Eur J Med Chem, 2020, 188:112017.