药学学报, 2020, 55(12): 2843-2853
朱文文, 李梦林, 张金兰. 单克隆抗体药物质量分析质谱技术研究进展[J]. 药学学报, 2020, 55(12): 2843-2853.
ZHU Wen-wen, LI Meng-lin, ZHANG Jin-lan. Development of mass spectrometry technique for quality assessment of monoclonal antibodies[J]. Acta Pharmaceutica Sinica, 2020, 55(12): 2843-2853.

朱文文, 李梦林, 张金兰
中国医学科学院、北京协和医学院药物研究所, 天然药物活性物质与功能国家重点实验室, 北京 100050
关键词:    单克隆抗体      质量评价标准      质谱技术      结构表征      杂质分析      药代动力学/药效学研究     
Development of mass spectrometry technique for quality assessment of monoclonal antibodies
ZHU Wen-wen, LI Meng-lin, ZHANG Jin-lan
State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
The research and development of monoclonal antibodies (mAbs) is a rapidly developing field. From the first generation of murine mAbs to the fourth generation of fully human mAbs, the efficacy and safety of mAbs in the treatment of various diseases have been continuously improved. In order to regulate the development and evaluation of mAbs, drug regulatory agencies and pharmacopeias of America and China have tried to issue feasible test procedures and acceptance criteria for quality evaluation of mAbs and biosimilars. Mass spectrometry (MS) technique with high sensitivity, resolution, selectivity, and specificity has become an important tool to evaluate the quality characteristics of monoclonal antibody-related products or specify mAb quality. The research of MS-based monoclonal antibody study involves structure characterization, impurity analysis, pharmacokinetics/pharmacodynamics (PK/PD), etc. This review focuses on the current quality control requirements of mAb related products and the development of MS technique for mAb quality characterization and specification. It is expected to provide information and references for evaluating the quality of monoclonal antibodies under research and development.
Key words:    therapeutic monoclonal antibody    quality standard    mass spectrometry    structure characterization    impurity analysis    pharmacokinetics/pharmacodynamics   
收稿日期: 2020-06-02
DOI: 10.16438/j.0513-4870.2020-0889
基金项目: 中国医学科学院医学与健康科技创新工程(药物药效和安全性相关的关键分析新技术研究,2016-I2M-3-010);国家重点研发计划(高灵敏度糖蛋白鉴定方法研发及其在药物杂质分析中的应用,2018YFF0212504).
通讯作者: 张金兰,Tel:86-10-83154880,E-mail:zhjl@imm.ac.cn
Email: zhjl@imm.ac.cn
PDF(1091KB) Free
朱文文  在本刊中的所有文章
李梦林  在本刊中的所有文章
张金兰  在本刊中的所有文章

[1] Carter PJ. Potent antibody therapeutics by design[J]. Nat Rev Immunol, 2006, 6:343-357.
[2] Singh S, Tank NK, Dwiwedi P, et al. Monoclonal antibodies:a review[J]. Curr Clin Pharmacol, 2018, 13:85-99.
[3] Zhao CX, Hu ZW, Bing C. Recent advances in monoclonal antibody-based therapeutics[J]. Acta Pharm Sin (药学学报), 2017, 52:837-847.
[4] Grilo AL, Mantalaris A. The increasingly human and profitable monoclonal antibody market[J]. Trends Biotechnol, 2019, 37:9-16.
[5] European Medicines Agency, European public assessment reports[R]. https://www.ema.europa.eu/en/medicines/download-medicine-data#european-public-assessment-reports-(epar)-section.
[6] Food and Drug Administration. Purple Book:lists of licensed biological products with reference product exclusivity and biosimilarity or interchangeability evaluations[DB/OL]. Silver Spring, MD, 2016. https://www.fda.gov/media/89426/download.
[7] Görög S. Identification in drug quality control and drug research[J]. Trends Analyt Chem, 2015, 69:114-122.
[8] Lermyte F, Tsybin YO, O'Connor PB, et al. Top or middle? up or down? toward a standard lexicon for protein top-down and allied mass spectrometry approaches[J]. J Am Soc Mass Spectrom, 2019, 30:1149-1157.
[9] Buss NA, Henderson SJ, McFarlane M, et al. Monoclonal antibody therapeutics:history and future[J]. Curr Opin Pharmacol, 2012, 12:615-622.
[10] Köhler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity[J]. Nature, 1975, 256:495-497.
[11] Stern M, Herrmann R. Overview of monoclonal antibodies in cancer therapy:present and promise[J]. Crit Rev Oncol Hematol, 2005, 54:11-29.
[12] Boulianne GL, Hozumi N, Shulman MJ. Production of functional chimaeric mouse/human antibody[J]. Nature, 1984, 312:643-646.
[13] Jones PT, Dear PH, Foote J, et al. Replacing the complementarity-determining regions in a human antibody with those from a mouse[J]. Nature, 1986, 321:522-525.
[14] Rodgers KR, Chou RC. Therapeutic monoclonal antibodies and derivatives:historical perspectives and future directions[J]. Biotechnol Adv, 2016, 34:1149-1158.
[15] Presta LG. Engineering of therapeutic antibodies to minimize immunogenicity and optimize function[J]. Adv Drug Deliv Rev, 2006, 58:640-656.
[16] Nelson AL, Dhimolea E, Reichert JM. Development trends for human monoclonal antibody therapeutics[J]. Nat Rev Drug Discov, 2010, 9:767-774.
[17] Ghaderi D, Taylor RE, Padler-Karavani V, et al. Implications of the presence of N-glycolylneuraminic acid in recombinant therapeutic glycoproteins[J]. Nat Biotechnol, 2010, 28:863.
[18] Boyd P, Lines A, Patel A. The effect of the removal of sialic acid, galactose and total carbohydrate on the functional activity of Campath-1H[J]. Mol Immunol, 1995, 32:1311-1318.
[19] Scallon BJ, Tam SH, McCarthy SG, et al. Higher levels of sialylated Fc glycans in immunoglobulin G molecules can adversely impact functionality[J]. Mol Immunol, 2007, 44:1524-1534.
[20] Shinkawa T, Nakamura K, Yamane N, et al. The absence of fucose but not the presence of galactose or bisecting N-acetylglucosamine of human IgG1 complex-type oligosaccharides shows the critical role of enhancing antibody-dependent cellular cytotoxicity[J]. J Biol Chem, 2003, 278:3466-3473.
[21] Ferrara C, Grau S, Jäger C, et al. Unique carbohydrate-carbohydrate interactions are required for high affinity binding between FcγRⅢ and antibodies lacking core fucose[J]. Proc Natl Acad Sci U S A, 2011, 108:12669-12674.
[22] Fischer SK, Cheu M, Peng K, et al. Specific immune response to phospholipase B-like 2 protein, a host cell impurity in lebrikizumab clinical material[J]. AAPS J, 2017, 19:254-263.
[23] Chinese Pharmacopoeia Commission. Pharmacopoeia of the People's Republic of China (中华人民共和国药典)[S]. Vol 3. 2015 Ed. Beijing:China Medical Science Press, 2015:41-43.
[24] Na NA. Points to consider in the manufacture and testing of monoclonal antibody products for human use (1997)[J]. J Immunother, 1997, 20:214-215.
[25] Hmiel LK, Brorson KA, Boyne MT. Post-translational structural modifications of immunoglobulin G and their effect on biological activity[J]. Anal Bioanal Chem, 2015, 407:79-94.
[26] Yu CF, Cao XJ, Wang WB, et al. LC-MS analysis of sintilimab as an anti-PD-1 therapeutic mab for its improved hinge stability study[J]. Acta Pharm Sin (药学学报), 2019, 54:122-129.
[27] Fornelli L, Damoc E, Thomas PM, et al. Analysis of intact monoclonal antibody IgG1 by electron transfer dissociation orbitrap FTMS[J]. Mol Cell Proteomics, 2012, 11:1758-1767.
[28] Stoeckmann H, Adamczyk B, Hayes J, et al. Automated, High-throughput IgG-antibody glycoprofiling platform[J]. Anal Chem, 2013, 85:8841-8849.
[29] Zhang Z, Pan H, Chen X. Mass spectrometry for structural characterization of therapeutic antibodies[J]. Mass Spectrom Rev, 2009, 28:147-176.
[30] Donnelly DP, Rawlins CM, DeHart CJ, et al. Best practices and benchmarks for intact protein analysis for top-down mass spectrometry[J]. Nat Methods, 2019, 16:587-594.
[31] Cheng J, Wang L, Rive CM, et al. Complementary methods for de novo monoclonal antibody sequencing to achieve complete sequence coverage[J]. J Proteome Res, 2020, 19:2700-2707.
[32] Giansanti P, Tsiatsiani L, Low TY, et al. Six alternative proteases for mass spectrometry-based proteomics beyond trypsin[J]. Nat Protoc, 2016, 11:993.
[33] Beck A, Wagner-Rousset E, Ayoub D, et al. Characterization of therapeutic antibodies and related products[J]. Anal Chem, 2013, 85:715-736.
[34] Regl C, Wohlschlager T, Esser-Skala W, et al. Dilute-and-shoot analysis of therapeutic monoclonal antibody variants in fermentation broth:a method capability study[J]. MAbs, 2019, 11:569-582.
[35] Belov AM, Zang L, Sebastiano R, et al. Complementary middle-down and intact monoclonal antibody proteoform characterization by capillary zone electrophoresis-mass spectrometry[J]. Electrophoresis, 2018, 39:2069-2082.
[36] Fornelli L, Ayoub D, Aizikov K, et al. Middle-down analysis of monoclonal antibodies with electron transfer dissociation orbitrap fourier transform mass spectrometry[J]. Anal Chem, 2014, 86:3005-3012.
[37] Terral G, Beck A, Cianférani S. Insights from native mass spectrometry and ion mobility-mass spectrometry for antibody and antibody-based product characterization[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2016, 1032:79-90.
[38] Tian Y, Han L, Buckner AC, et al. Collision induced unfolding of intact antibodies:rapid characterization of disulfide bonding patterns, glycosylation, and structures[J]. Anal Chem, 2015, 87:11509-11515.
[39] Aoyama M, Hashii N, Tsukimura W, et al. Effects of terminal galactose residues in mannose α1-6 arm of Fc-glycan on the effector functions of therapeutic monoclonal antibodies[J]. MAbs, 2019, 11:826-836.
[40] Dashivets T, Stracke J, Dengl S, et al. Oxidation in the complementarity-determining regions differentially influences the properties of therapeutic antibodies[J]. MAbs, 2016, 8:1525-1535.
[41] Yan Y, Wei H, Fu Y, et al. Isomerization and oxidation in the complementarity-determining regions of a monoclonal antibody:a study of the modification-structure-function correlations by hydrogen-deuterium exchange mass spectrometry[J]. Anal Chem, 2016, 88:2041-2050.
[42] Chavez JD, Bruce JE. Chemical cross-linking with mass spectrometry:a tool for systems structural biology[J]. Curr Opin Chem Biol, 2019, 48:8-18.
[43] Xiao K, Han Y, Yang H, et al. Mass spectrometry-based qualitative and quantitative N-glycomics:an update of 2017-2018[J]. Anal Chim Acta, 2019, 1091:1-22.
[44] Hart-Smith G, Raftery MJ. Detection and characterization of low abundance glycopeptides via higher-energy C-trap dissociation and orbitrap mass analysis[J]. J Am Soc Mass Spectrom, 2011, 23:124-140.
[45] Shang TQ, Saati A, Toler KN, et al. Development and application of a robust N-glycan profiling method for heightened characterization of monoclonal antibodies and related glycoproteins[J]. J Pharm Sci, 2014, 103:1967-1978.
[46] Hanneman AJS, Strand J, Huang CT. Profiling and characterization of sialylated N-glycans by 2D-HPLC (HIAX/PGC) with online orbitrap MS/MS and offline MSn[J]. J Pharm Sci, 2014, 103:400-408.
[47] Schiel JE, Rogstad SM, Boyne MT. Comparison of traditional 2-AB fluorescence LC-MS/MS and automated LC-MS for the comparative glycan analysis of monoclonal antibodies[J]. J Pharm Sci, 2015, 104:2464-2472.
[48] Galermo AG, Nandita E, Barboza M, et al. Liquid chromatography-tandem mass spectrometry approach for determining glycosidic linkages[J]. Anal Chem, 2018, 90:13073-13080.
[49] Varki A, Cummings RD, Esko JD. Essentials of Glycobiology[M/OL]//Mulloy B, Dell A, Stanley P. Structural Analysis of Glycans. Cold Spring Harbor (NY):Cold Spring Harbor Laboratory Press, 2017. https://www.ncbi.nlm.nih.gov/books/NBK453059/.
[50] Silva AMN, Vitorino R, Domingues MRM, et al. Post-translational modifications and mass spectrometry detection[J]. Free Radic Biol Med, 2013, 65:925-941.
[51] Hurtado PP, O'Connor PB. Differentiation of isomeric amino acid residues in proteins and peptides using mass spectrometry[J]. Mass Spectrom Rev, 2012, 31:609-625.
[52] Halley J, Chou YR, Cicchino C, et al. An industry perspective on forced degradation studies of biopharmaceuticals:survey outcome and recommendations[J]. J Pharm Sci, 2020, 109:6-21.
[53] Mahler HC, Müller R, Friess W, et al. Induction and analysis of aggregates in a liquid IgG1-antibody formulation[J]. Eur J Pharm Biopharm, 2005, 59:407-417.
[54] Remmele RL, Callahan WJ, Krishnan S, et al. Active dimer of epratuzumab provides insight into the complex nature of an antibody aggregate[J]. J Pharm Sci, 2006, 95:126-145.
[55] Arakawa T, Ejima D, Li T, et al. The critical role of mobile phase composition in size exclusion chromatography of protein pharmaceuticals[J]. J Pharm Sci, 2010, 99:1674-1692.
[56] Mahler HC, Friess W, Grauschopf U, et al. Protein aggregation:pathways, induction factors and analysis[J]. J Pharm Sci, 2009, 98:2909-2934.
[57] Kükrer B, Filipe V, van Duijn E, et al. Mass spectrometric analysis of intact human monoclonal antibody aggregates fractionated by size-exclusion chromatography[J]. Pharm Res, 2010, 27:2197-2204.
[58] Schenauer MR, Flynn GC, Goetze AM. Identification and quantification of host cell protein impurities in biotherapeutics using mass spectrometry[J]. Anal Biochem, 2012, 428:150-157.
[59] Gillet LC, Navarro P, Tate S, et al. Targeted data extraction of the MS/MS spectra generated by data-independent acquisition:a new concept for consistent and accurate proteome analysis[J]. Mol Cell Proteomics, 2012, 11:O111.016717. DOI:10.1074/mcp.O111.016717.
[60] Chen IH, Xiao H, Daly T, et al. Improved host cell protein analysis in monoclonal antibody products through molecular weight cutoff enrichment[J]. Anal Chem, 2020, 92:3751-3757.
[61] Wang Q, Slaney TR, Wu W, et al. Enhancing host-cell protein detection in protein therapeutics using HILIC enrichment and proteomic analysis[J]. Anal Chem, 2020. DOI:10.1021/acs.analchem.0c00360.
[62] Leipold D, Prabhu S. Pharmacokinetic and pharmacodynamic considerations in the design of therapeutic antibodies[J]. Clin Transl Sci, 2019, 12:130-139.
[63] Dostalek M, Gardner I, Gurbaxani BM, et al. Pharmacokinetics, pharmacodynamics and physiologically-based pharmacokinetic modelling of monoclonal antibodies[J]. Clin Pharmacokinet, 2013, 52:83-124.
[64] Zhang Q, Spellman DS, Song Y, et al. Generic automated method for liquid chromatography-multiple reaction monitoring mass spectrometry based monoclonal antibody quantitation for preclinical pharmacokinetic studies[J]. Anal Chem, 2014, 86:8776-8784.
[65] Liu A, Kozhich A, Passmore D, et al. Quantitative bioanalysis of antibody-conjugated payload in monkey plasma using a hybrid immuno-capture LC-MS/MS approach:assay development, validation, and a case study[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2015, 1002:54-62.