药学学报, 2020, 55(12): 2862-2868
引用本文:
陈如心, 王增明, 韩晓璐, 刘中成, 郑爱萍. 粉液粘结型3D打印技术原理及在固体药物制剂中的应用与面临的挑战[J]. 药学学报, 2020, 55(12): 2862-2868.
CHEN Ru-xin, WANG Zeng-ming, HAN Xiao-lu, LIU Zhong-cheng, ZHENG Ai-ping. The principle of drop-on-powder 3D printing and its application and challenge in solid preparation[J]. Acta Pharmaceutica Sinica, 2020, 55(12): 2862-2868.

粉液粘结型3D打印技术原理及在固体药物制剂中的应用与面临的挑战
陈如心1,2, 王增明2, 韩晓璐2, 刘中成1, 郑爱萍2
1. 河北大学药学院, 河北 保定 071002;
2. 军事科学院军事医学研究院毒物药物研究所, 北京 100850
摘要:
3D打印技术具有空间分布精确、释药精准和药物剂量个性化等优势,可以弥补传统制药技术的不足。粉液粘结型3D打印技术近年来广泛应用于药物制剂研究,与其他类型3D打印技术相比,更加简便、灵活和易操作。2015年美国FDA批准了全球首款采用粉液粘结型3D打印技术制备的左乙拉西坦(Spritam®)速溶片,充分展示了该技术在制剂领域的特有优势及广阔前景。本文重点阐述了粉液粘结型3D打印的技术原理、关键因素及其在固体制剂领域的应用前景和未来发展所面临的挑战。
关键词:    3D打印技术      粉液粘结型      技术原理      固体药物制剂      个性化给药     
The principle of drop-on-powder 3D printing and its application and challenge in solid preparation
CHEN Ru-xin1,2, WANG Zeng-ming2, HAN Xiao-lu2, LIU Zhong-cheng1, ZHENG Ai-ping2
1. College of Pharmacy, Hebei University, Baoding 071002, China;
2. Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100850, China
Abstract:
3D printing technology has the advantages of accurate spatial distribution, accurate drug release and personalized drug dosage, which can make up for the shortcomings of traditional pharmaceutical technology. In recent years drop-on powder (DoP) 3D printing technology has been widely used in pharmaceutical preparation. Compared with other types of 3D printing technology, it is more simple, flexible and easy to operate. In 2015, Aprecia Pharmaceuticals announced that the US Food and Drug Administration (FDA) approves the launch of its first instant tablet Spritam® (levetiracetam) made with DoP 3D printing. After the first 3D printed medicine was launched, people also saw the unique advantages and broad prospects of DoP 3D printing technology platform in pharmaceutical preparation. This review focuses on the technical principles and key factors of DoP 3D printing, its application in the preparation field and its future development challenges.
Key words:    3D printing technology    drop-on-powder    principle    solid preparation    individualized administration   
收稿日期: 2020-04-18
DOI: 10.16438/j.0513-4870.2020-0575
基金项目: 国家科技重大专项(2018ZX09721003-007).
通讯作者: 刘中成,Tel:86-312-5971107,E-mail:liuzc@hbu.edu.cn;郑爱萍,Tel:86-10-66931694,E-mail:apzheng@163.com
Email: liuzc@hbu.edu.cn;apzheng@163.com
相关功能
PDF(887KB) Free
打印本文
0
作者相关文章
陈如心  在本刊中的所有文章
王增明  在本刊中的所有文章
韩晓璐  在本刊中的所有文章
刘中成  在本刊中的所有文章
郑爱萍  在本刊中的所有文章

参考文献:
[1] Norman J, Madurawe RD, Moore CM, et al. A new chapter in pharmaceutical manufacturing:3D-printed drug products[J]. Adv Drug Deliv Rev, 2017, 108:39-50.
[2] Wang X, Zhang C, Ping QN. Advances of 3D printing technology in advanced pharmaceutical preparations[J]. J Chin Pharm Univ (中国药科大学学报), 2016, 47:140-147.
[3] Ventola CL. Medical applications for 3D printing:current and projected uses[J]. Pharm Ther, 2014, 39:704-711.
[4] Shi J, Wang ZM, Zheng AP. Applications and challenges of 3D printing technique in manufacturing pharmaceutical preparations[J]. Prog Pharml Sci (药学进展), 2019, 43:164-173.
[5] Liu Z, Sun PJ. The first 3D print antiepileptic drugs-spritam[J]. J Pharm Res (药学研究), 2015, 34:556-558.
[6] Wang YG, Wang X. 3D Printing Technology (3D打印技术)[M]. Wuhan:Huazhong University of Science and Technology Press, 2014:3-61.
[7] Yu DG, Zhu LM, Branford-White CJ, et al. Three-dimensional printing in pharmaceutics:promises and problems[J]. J Pharm Sci, 2008, 97:3666-3690.
[8] Katstra WE, Palazzolo RD, Rowe CW, et al. Oral dosage forms fabricated by three dimensional printing[J]. J Control Release, 2000, 66:1-9.
[9] Dong X, Zhao HT, Li L, et al. Researching and applying of colorful powder binding 3D printer[J]. Tech Automat Appl (自动化技术与应用), 2017, 36:92-95.
[10] Prasad LK, Smyth H. 3D printing technologies for drug delivery:a review[J]. Drug Devel Ind Pharm, 2016, 42:1019-1031.
[11] Hansell CW. Jet sprayer actuated by supersonic waves[P]. 1946-04-01.
[12] Xiao B. Research on Key Technology of Tablet Production 3D Printing Equipment (片剂生产型三维打印设备关键技术研究)[D]. Wuhan:Huazhong University of Science and Technology, 2013.
[13] Gong XD. Principle of ink-jet printer nozzle and analysis of its common faults[J]. Print World (印刷世界), 2011, 12:37-38.
[14] Alomari M, Mohamed FH, Basit AW, et al. Personalised dosing:printing a dose of one's own medicine[J]. Int J Pharm, 2015, 494:568-577.
[15] Hon KKB, Li L, Hutchings IM. Direct writing technology-advances and developments[J]. CIRP Ann Manuf Technol, 2008, 57:601-620.
[16] Fromm JE. Numerical calculation of the fluid dynamics of dropon-demand jets[J]. IBM J Res Dev, 1984, 28:322-333.
[17] Sumerel J, Lewis J, Doraiswamy A, et al. Piezoelectric ink jet processing of materials for medical and biological applications[J]. Biotechnol J, 2006, 1:976-987.
[18] Derby B. Inkjet printing of functional and structural materials:fluid property requirements, feature stability, and resolution[J]. Annu Rev Mater Res, 2010, 40:395-414.
[19] Mckinley GH, Renardy M. Wolfgang von ohnesorge[J]. Phys Fluids, 2011, 23:127101.
[20] Jang D, Kim D, Moon J. Influence of fluid physical properties on ink-jet printability[J]. Langmuir, 2009, 25:2629-2635.
[21] Liu DD, Tan HW, Tran T. Droplet impact on heated powder bed[J]. Soft Matter, 2018, 14:9967-9972
[22] Lee ACS, Sojka PE. Drop impact and agglomeration under static powder bed conditions[J]. Aiche J, 2012, 58:78-86.
[23] Ping QN, Tu XD, Zhang JS, et al. Pharmaceutics (药剂学)[M]. 4th ed. Beijing:People's Medical Publishing House, 2013:722.
[24] Lin QF, Yang F, Fang KY, et al. Study on the preparation of Suxiao Jiuxin orally disintegrating tablets by 3D printing[J]. J Guangdong Pharm Univ (广东药学院学报), 2016, 32:1-4.
[25] Yu DG, Branford-White C, Yang YC, et al. A novel fast disintegrating tablet fabricated by three-dimensional printing[J]. Drug Dev Ind Pharm, 2009, 35:1530-1536.
[26] John BS. Controlled delivery oral dosage forms in thenew millennium[J]. Pharm Manuf Pack Sourcer, 2000, 44:1.
[27] Lin MM, Chen PH, Tian P, et al. Optimization and evaluation of the structural design of clozapine orally disintegrating tablets by three dimensional printing[J]. Chin New Drug J (中国新药杂志), 2019, 28:739-744.
[28] Fu WH. Preparation of clozapine oral disintegrating tablets[J]. Chin J Modern Appl Pharm (中国现代应用药学), 2007, 24:299-301.
[29] Jiang LH. Comparison study of clozapine orally disintegrating tablets and clozapine in the treatment of schizophrenia[J]. Guide China Med (中国医药指南), 2013, 11:478-479.
[30] Yu DG, Liu J, Yang Y, et al. Studies on preparation of controlled-release delivery systems with drug gradients using three dimensional printing technique[J]. Chin Pharm J (中国药学杂志), 2006, 41:1080-1083.
[31] Yu DG, Branford-White C, Ma ZH, et al. Novel drug deliverydevices for providing linear release profiles fabricated by 3DP[J]. Int J Pharm, 2009, 370:160-166.
[32] Lin XM, Guo NZ, Yang HX, et al. Progress in quality control of implantations[J]. Chin New Drug J (中国新药杂志), 2019, 28:528-535.
[33] Huang WD. Research on Implantable Drug Delivery System Based on 3D Printing Technology (基于三维打印技术的植入式给药系统研究)[D]. Wuhan:Huazhong University of Science and Technology, 2007:35-48.
[34] Lin S, Chao PY, Chien YW, et al. In vitro and in vivo evaluations of biodegradable implants for hormone replacement therapy:effect of system design and PK-PD relationship[J]. AAPS PharmSciTech, 2001, 2:3.
[35] Huang WD, Wu WG, Zheng QX, et al. Advances in the research of implantable drug delivery system[J]. Huangshi Inst Tech (黄石理工学院学报), 2008, 24:26-30.
[36] Mah TF, O'Toole GA. Mechanisms of biofilm resistance to antimicrobial agents[J]. Trends Microbiol, 2001, 9:34-39.
[37] Borriello G, Werner E, Roe F, et al. Oxygen limitation contributes to antibiotic tolerance of Pseudomonas aeruginosa in biofilms[J]. Antimicrob Agents Chemother, 2004, 48:2659-2664.
[38] Lewis K. Persister cells, dormancy and infectious disease[J]. Nat Rev Microbiol, 2007, 5:48-56.
[39] Gu Y, Chen X, Lee JH, et al. Inkjet printed antibiotic-and calcium-eluting bioresorbable nanocomposite micropatterns for orthopedic implants[J]. Acta Biomater, 2012, 8:424-431.
[40] Sun JS, Tsuang YH, Liao CJ, et al. The effects of calciumphosphate particles on the growth of osteoblasts[J]. J Biomed Mater Res, 1997, 37:324-334.
[41] Wu WG, Zheng QX, Guo XD. Experimental study of a rifampicine-isoniazid-controlled release drug implant[J]. Chin J Biomed Eng (中国生物医学工程学报), 2010, 29:137-143.
[42] Huang WD, Zheng QX, Sun WQ, et al. Levofloxacin implants with predefined microstructure fabricated by three-dimensional printing technique[J]. Int J Pharm, 2007, 339:33-38.
[43] Sophia I, Alexander H, Simona I, et al. Powder bed 3D-printing of highly loaded drug delivery devices with hydroxypropyl cellulose as solid binder[J]. Int J Phaem, 2018, 555:198-206.
[44] Kolakovic R, Viitala T, Ihalainen P, et al. Printing technologies in fabrication of drug delivery systems[J]. Expert Opin Drug Del, 2013, 10:1711-1723.
[45] Shi KJ, Tan DK, Nokhodchi A, et al. Drop-on-powder 3D printing of tablets with a anti-cancer drug, 5-fluorouracil[J]. Pharmaceutics, 2019, 11:150.
[46] Ma W. Overview of 3D printing technology in pharmaceutical preparations research[J]. Pharm Today (今日药学), 2018, 28:204-206.
[47] Lin W, Pi XY, Lv JQ, et al. Precise dosage of commercial warfarin sodium tablets and hydrochlorothiazide tablets by 3D printing[J]. Acta Pharm Sin (药学学报), 2018, 53:1901-1907.
[48] Prakash K, Baishakhi D, Assaleh FH, et al. Top-down and bottom-up approaches in 3D printing technologies for drug delivery challenges[J]. Crit Rev Ther Drug Carrier Syst, 2015, 32:61-87.
[49] Jamróz W, Szafraniec J, Kurek M, et al. 3D printing in pharmaceutical and medical applications-recent achievements and challenges[J]. Pharm Res, 2018, 35:176.
[50] Zhao J, Jiang ML, Ding Y. Research progress and engineering prospect on the formulation design of 3D printing technology[J]. Acta Pharm Sin (药学学报), 2018, 53:1303-1310.