药学学报, 2020, 55(12): 2883-2891
引用本文:
翁兴业, 庞遵霆, 钱帅, 魏元锋, 高缘, 张建军. 晶体工程学技术改善药物理化性质以提高成药性[J]. 药学学报, 2020, 55(12): 2883-2891.
WENG Xing-ye, PANG Zun-ting, QIAN Shuai, WEI Yuan-feng, GAO Yuan, ZHANG Jian-jun. Druggability enhancement by modification of physicochemical properties of drugs via crystal engineering[J]. Acta Pharmaceutica Sinica, 2020, 55(12): 2883-2891.

晶体工程学技术改善药物理化性质以提高成药性
翁兴业1, 庞遵霆2, 钱帅2, 魏元锋2, 高缘2, 张建军1
1. 中国药科大学药学院, 江苏 南京 211198;
2. 中国药科大学中药学院, 江苏 南京 211198
摘要:
固体药物的溶解/溶出度、吸湿性和机械性质对药物生物利用度、处方工艺及稳定性等方面有深远影响。晶体药物理化性质与其内在晶体结构密切相关,药物晶体工程可以从分子水平改变药物晶体结构和修饰药物的理化性质,具有提高药物产品性能的潜质。本文从多晶型、无定形/共无定形和共晶等方面综述了晶体工程学技术对药物水溶性、吸湿性和机械性质的改善,为其在改善药物理化性质和提高成药性方面的应用提供参考。
关键词:    多晶型      无定形      共无定形      共晶      理化性质      成药性     
Druggability enhancement by modification of physicochemical properties of drugs via crystal engineering
WENG Xing-ye1, PANG Zun-ting2, QIAN Shuai2, WEI Yuan-feng2, GAO Yuan2, ZHANG Jian-jun1
1. School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China;
2. School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
Abstract:
The solubility/dissolution, hygroscopicity and mechanical properties of drug candidates have a profound effect on oral bioavailability, processability and stability. The physicochemical properties of crystalline drug are closely related to inner crystal structure. Crystal engineering technologies, as strategies of altering the crystal structure and tailoring physicochemical properties at molecular level, possess the potential of enhancing the pharmaceutical performance of product. The current article reviewed the modification of drug solubility/dissolution, hygroscopicity and mechanical properties by crystal engineering technologies through polymorphic selection, amorphization/co-amorphization, as well as co-crystallization, which provided a reference for the applications of pharmaceutical crystallography in improving physicochemical properties and druggability.
Key words:    polymorphism    amorphous    coamorphous    cocrystal    physicochemical property    druggability   
收稿日期: 2020-05-22
DOI: 10.16438/j.0513-4870.2020-0813
通讯作者: 张建军,Tel:86-25-83379418,E-mail:amicute@163.com
Email: amicute@163.com
相关功能
PDF(949KB) Free
打印本文
0
作者相关文章
翁兴业  在本刊中的所有文章
庞遵霆  在本刊中的所有文章
钱帅  在本刊中的所有文章
魏元锋  在本刊中的所有文章
高缘  在本刊中的所有文章
张建军  在本刊中的所有文章

参考文献:
[1] Newman A, Wenslow R. Solid form changes during drug development:good, bad, and ugly case studies[J]. AAPS Open, 2016. DOI:10.1186/s41120-016-0003-4.
[2] Karagianni A, Malamatari M, Kachrimanis K. Pharmaceutical cocrystals:new solid phase modification approaches for the formulation of APIs[J]. Pharmaceutics, 2018, 10:18.
[3] Yang X, Lu J, Wang X, et al. In situ monitoring of the solution-mediated polymorphic transformation of glycine:characterization of the polymorphs and observation of the transformation rate using Raman spectroscopy and microscopy[J]. J Raman Spectrosc, 2008, 39:1433-1439.
[4] Tian F, Qu H, Zimmermann A, et al. Factors affecting crystallization of hydrates[J]. J Pharm Pharmacol, 2010, 62:1534-1546.
[5] Grothe E, Meekes H, Vlieg E, et al. Solvates, salts, and cocrystals:a proposal for a feasible classification system[J]. Cryst Growth Des, 2016, 16:3237-3243.
[6] Qiu PS, Gao J, Qian S, et al. Enhanced dissolution and intestinal absorption of adefovir dipivoxil by cocrystal formation with acetaminophen[J]. Acta Pharm Sin (药学学报), 2018, 53:993-1001.
[7] Évora AOL, Bernardes CES, Piedade MFM, et al. Energetics of glycine cocrystal or salt formation with two regioisomers:fumaric acid and maleic acid[J]. Cryst Growth Des, 2019, 19:5054-5064.
[8] Surov AO, Vasilev NA, Churakov AV, et al. Solid forms of ciprofloxacin salicylate:polymorphism, formation pathways, and thermodynamic stability[J]. Cryst Growth Des, 2019, 19:2979-2990.
[9] Datta S, Grant DJ. Crystal structures of drugs:advances in determination, prediction and engineering[J]. Nat Rev Drug Discov, 2004, 3:42-57.
[10] Gunnam A, Nangia AK. High-solubility salts of the multiple sclerosis drug teriflunomide[J]. Cryst Growth Des, 2019, 19:5407-5417.
[11] Nelson E. Solution rate of theophylline salts and effects from oral administration[J]. J Am Pharm Assoc, 1957, 46:607-614.
[12] Nelson E. Comparative dissolution rates of weak acids and their sodium salts[J]. J Am Pharm Assoc, 1958, 47:297-299.
[13] Dudek MK, Paluch P, Śniechowska J, et al. Crystal structure determination of an elusive methanol solvate-hydrate of catechin using crystal structure prediction and NMR crystallography[J]. Cryst Eng Comm, 2020, 3:12-18.
[14] Alkhamis KA, Salem MS, Obaidat RM. Comparison between dehydration and desolvation kinetics of fluconazole monohydrate and fluconazole ethylacetate solvate using three different methods[J]. J Pharm Sci, 2006, 95:859-870.
[15] Malwade CR, Qu HY. Antisolvent crystallization of indomethacin from a ternary solvent system with high productivity, better polymorphism, and particle size control[J]. Org Process Res Dev, 2019, 23:968-976.
[16] Malaj L, Censi R, Martino P. Mechanisms for dehydration of three sodium naproxen hydrates[J]. Cryst Growth Des, 2009, 9:2128-2136.
[17] Zimmermann A, Tian F, de Diego HL, et al. Structural characterisation and dehydration behaviour of siramesine hydrochloride[J]. J Pharm Sci, 2009, 98:3596-3607.
[18] Kumar D, Thipparaboina R, Shastri NR. Can vacuum morphologies predict solubility and intrinsic dissolution rate? A case study with felodipine polymorph form IV[J]. J Comput Sci, 2015, 10:178-185.
[19] Saini A, Chadha R, Gupta A, et al. New conformational polymorph of hydrochlorothiazide with improved solubility[J]. Pharm Dev Technol, 2016, 21:611-618.
[20] John B, Stephen S, Rodger H, et al. Ritonavir:an extraordinary example of conformational polymorphism[J]. Pharm Res, 2001, 18:859-866.
[21] Chieng N, Rades T, Aaltonen J. An overview of recent studies on the analysis of pharmaceutical polymorphs[J]. J Pharm Biomed Anal, 2011, 55:618-644.
[22] Zhu B, Wang JR, Ren G, et al. Polymorphs and hydrates of apatinib mesylate:insight into the crystal structures, properties, and phase transformations[J]. Cryst Growth Des, 2016, 16:6537-6546.
[23] Zhang Q, Lu LY, Dai WJ, et al. New polymorphs of huperzine A:preparation, structures, and physicochemical properties of anhydrous crystal forms[J]. Cryst Growth Des, 2013, 13:2198-2207.
[24] Wang CG, Sun CC. The landscape of mechanical properties of molecular crystals[J]. Cryst Eng Comm, 2020, 22:1149-1153.
[25] Sun CC. Decoding powder tabletability:roles of particle adhesion and plasticity[J]. J Adhes Sci Technol, 2011, 25:483-499.
[26] Ahmed H, Shimpi MR, Velaga SP. Relationship between mechanical properties and crystal structure in cocrystals and salt of paracetamol[J]. Drug Dev Ind Pharm, 2017, 43:89-97.
[27] Osei-Yeboah F, Chang SY, Sun CC. A critical examination of the phenomenon of bonding area-bonding strength interplay in powder tableting[J]. Pharm Res, 2016, 33:1126-1132.
[28] Wang CG, Sun CC. Identifying slip planes in organic polymorphs by combined energy framework calculations and topology analysis[J]. Cryst Growth Des, 2018, 18:1909-1916.
[29] Cheng H, Wei Y, Wang S, et al. Improving tabletability of excipients by metal-organic framework-based cocrystallization:a study of mannitol and CaCl2[J]. Pharm Res, 2020, 37:130-144.
[30] Jain A, Shah HS, Johnson PR, et al. Crystal anisotropy explains structure-mechanics impact on tableting performance of flufenamic acid polymorphs[J]. Eur J Pharm Biopharm, 2018, 132:83-92.
[31] Bhandary S, Mangalampalli K, Ramamurty U, et al. Crystal structure-mechanical property correlations in N-(3-ethynylphenyl)-3-fluorobenzamide polymorphs[J]. Cryst Growth Des, 2017, 18:47-51.
[32] Tobyn M, Brown J, Dennis AB, et al. Amorphous drug-PVP dispersions:application of theoretical, thermal and spectroscopic analytical techniques to the study of a molecule with intermolecular bonds in both the crystalline and pure amorphous state[J]. J Pharm Sci, 2009, 98:3456-3468.
[33] Kanaujia P, Poovizhi P, Ng WK, et al. Amorphous formulations for dissolution and bioavailability enhancement of poorly soluble APIs[J]. Powder Technol, 2015, 285:2-15.
[34] Laitinen R, Lobmann K, Strachan CJ, et al. Emerging trends in the stabilization of amorphous drugs[J]. Int J Pharm, 2013, 453:65-79.
[35] Skrdla PJ, Floyd PD, Dell'Orco PC. Predicted amorphous solubility and dissolution rate advantages following moisture sorption:case studies of indomethacin and felodipine[J]. Int J Pharm, 2019, 555:100-108.
[36] Babu NJ, Nangia A. Solubility advantage of amorphous drugs and pharmaceutical cocrystals[J]. Cryst Growth Des, 2011, 11:2662-2679.
[37] Kim JS, Kim MS, Park HJ, et al. Physicochemical properties and oral bioavailability of amorphous atorvastatin hemi-calcium using spray-drying and SAS process[J]. Int J Pharm, 2008, 359:211-219.
[38] Yang W, Johnston KP, Williams RO. Comparison of bioavailability of amorphous versus crystalline itraconazole nanoparticles via pulmonary administration in rats[J]. Eur J Pharm Biopharm, 2010, 75:33-41.
[39] Shi Q, Moinuddin SM, Cai T. Advances in coamorphous drug delivery systems[J]. Acta Pharm Sin B, 2019, 9:19-35.
[40] Ma XY, Williams RO. Characterization of amorphous solid dispersions:an update[J]. J Drug Deliv Sci Tec, 2019, 50:113-124.
[41] Heng W, Su M, Cheng H, et al. Incorporation of complexation into a coamorphous system dramatically enhances dissolution and eliminates gelation of amorphous lurasidone hydrochloride[J]. Mol Pharm, 2020, 17:84-97.
[42] Kasten G, Lobmann K, Grohganz H, et al. Co-former selection for co-amorphous drug-amino acid formulations[J]. Int J Pharm, 2019, 557:366-373.
[43] Jensen KT, Lobmann K, Rades T, et al. Improving co-amorphous drug formulations by the addition of the highly water soluble amino acid, proline[J]. Pharmaceutics, 2014, 6:416-435.
[44] Bianco S, Tewes F, Tajber L, et al. Bulk, surface properties and water uptake mechanisms of salt/acid amorphous composite systems[J]. Int J Pharm, 2013, 456:143-152.
[45] Puri V, Dantuluri AK, Kumar M, et al. Wettability and surface chemistry of crystalline and amorphous forms of a poorly water soluble drug[J]. Eur J Pharm Sci, 2010, 40:84-93.
[46] Newell HE, Buckton G. The use of inverse phase gas chromatography to study the change of surface energy of amorphous lactose as a function of relative humidity and the processes of collapse and crystallisation[J]. Int J Pharm, 2001, 217:45-56.
[47] Wang J, Chang R, Zhao Y, et al. Coamorphous loratadine-citric acid system with enhanced physical stability and bioavailability[J]. AAPS Pharm Sci Tech, 2017, 18:2541-2550.
[48] Mizoguchi R, Waraya H, Hirakura Y. Application of co-amorphous technology for improving the physicochemical properties of amorphous formulations[J]. Mol Pharm, 2019, 16:2142-2152.
[49] Telang C, Mujumdar S, Mathew M. Improved physical stability of amorphous state through acid base interactions[J]. J Pharm Sci, 2009, 98:2149-2159.
[50] Su ML, Xia YM, Shen YJ, et al. A novel drug-drug coamorphous system without molecular interactions:improve the physicochemical properties of tadalafil and repaglinide[J]. RSC Adv, 2020, 10:565-583.
[51] Adeleye OA, Femi-Oyewo MN, Odeniyi MA. Effect of compression pressure on mechanical and release properties of tramadol matrix tablets[J]. Curr Issues Pharm Med Sci, 2015, 28:120-125.
[52] Paluch KJ, Tajber L, Corrigan OI, et al. Impact of alternative solid state forms and specific surface area of high-dose, hydrophilic active pharmaceutical ingredients on tabletability[J]. Mol Pharm, 2013, 10:3628-3639.
[53] Hancock BC, Carlson GT, Ladipo DD, et al. Comparison of the mechanical properties of the crystalline and amorphous forms of a drug substance[J]. Int J Pharm, 2002, 241:73-85.
[54] Thakral NK, Mohapatra S, Stephenson GA, et al. Compression-induced crystallization of amorphous indomethacin in tablets:characterization of spatial heterogeneity by two-dimensional X-ray diffractometry[J]. Mol Pharm, 2015, 12:253-263.
[55] Li Y, Yu J, Hu S, et al. Polymer nanocoating of amorphous drugs for improving stability, dissolution, powder flow, and tabletability:the case of chitosan-coated cndomethacin[J]. Mol Pharm, 2019, 16:1305-1311.
[56] Good DJ, Rodríguez-Hornedo N. Solubility advantage of pharmaceutical cocrystals[J]. Cryst Growth Des, 2009, 9:2252-2264.
[57] Thakuria R, Delori A, Jones W, et al. Pharmaceutical cocrystals and poorly soluble drugs[J]. Int J Pharm, 2013, 453:101-125.
[58] Dhara D, Bavishi CH. Spring and parachute:how cocrystals enhance solubility[J]. Prog Cryst Growth Charact Mater, 2016, 62:1-8.
[59] Guzman HR, Tawa M, Zhang Z, et al. Combined use of crystalline salt forms and precipitation inhibitors to improve oral absorption of celecoxib from solid oral formulations[J]. J Pharm Sci, 2007, 96:2686-2702.
[60] Remenar JF, Peterson ML, Stephens PW, et al. Celecoxib:nicotinamide dissociation: using excipients to capture the cocrystal's potential[J]. Mol Pharm, 2007, 4:386-400.
[61] Wei YY, Zhang L, Wang N, et al. Mechanistic study on complexation-induced spring and hover dissolution behavior of ibuprofen-nicotinamide cocrystal[J]. Cryst Growth Des, 2018, 18:7343-7355.
[62] Shinozaki T, Ono M, Higashi KK, et al. A novel drug-drug cocrystal of levofloxacin and metacetamol:reduced hygroscopicity and improved photostability of levofloxacin[J]. J Pharm Sci, 2019, 108:2383-2390.
[63] Wang ZZ, Chen JM, Lu TB. Enhancing the hygroscopic stability of S-oxiracetam via pharmaceutical cocrystals[J]. Cryst Growth Des, 2012, 12:4562-4566.
[64] Putra QD, Furuishi T, Yonemochi E, et al. Drug-drug multicomponent crystals as an effective technique to overcome weaknesses in parent drugs[J]. Cryst Growth Des, 2016, 16:3577-3581.
[65] Mishra MK, Ramamurty U, Desiraju GR. Mechanical property design of molecular solids[J]. Curr Opin Solid State Mater Sci, 2016, 20:361-370.
[66] Reddy CM, Rama KG, Ghosh S. Mechanical properties of molecular crystals-applications to crystal engineering[J]. Cryst Eng Comm, 2010, 12:2296-2306.
[67] Singaraju AB, Nguyen K, Gawedzki P, et al. Combining crystal structure and interaction topology for interpreting functional molecular solids:a study of theophylline cocrystals[J]. Cryst Growth Des, 2017, 17:6741-6751.
[68] Sun CC, Hou H. Improving mechanical properties of caffeine and methyl gallate crystals by cocrystallization[J]. Cryst Growth Des, 2008, 8:1575-1579.
[69] Chow SF, Chen M, Shi L, et al. Simultaneously improving the mechanical properties, dissolution performance, and hygroscopicity of ibuprofen and flurbiprofen by cocrystallization with nicotinamide[J]. Pharm Res, 2012, 29:1854-1865.
[70] Kumar SS, Thakuria R, Nangia A. Pharmaceutical cocrystals and a nitrate salt of voriconazole[J]. Cryst Eng Comm, 2014, 16:4722-4731.
[71] Hiendrawan S, Veriansyah B, Widjojokusumo E, et al. Physicochemical and mechanical properties of paracetamol cocrystal with 5-nitroisophthalic acid[J]. Int J Pharm, 2016, 497:106-113.
[72] Chattoraj S, Shi L, Chen M, et al. Origin of deteriorated crystal plasticity and compaction properties of a 1:1 cocrystal between piroxicam and saccharin[J]. Cryst Growth Des, 2014, 14:3864-3874.
相关文献:
1.申亚静, 覃蕾, 衡伟利, 张建军, 钱帅, 高缘.他达拉非-达泊西汀共无定形物的形成及其溶出度与稳定性的评价[J]. 药学学报, 2018,53(7): 1162-1168
2.白雪莲;高永良.高通量技术在药剂学中的应用[J]. 药学学报, 2006,41(6): 487-492