药学学报, 2020, 55(12): 2904-2910
引用本文:
魏静, 冯跃平, 郑茜, 王钦, 张春. 双香豆素体外抗肿瘤活性筛选及相关机制初探[J]. 药学学报, 2020, 55(12): 2904-2910.
WEI Jing, FENG Yue-ping, ZHENG Xi, WANG Qin, ZHANG Chun. Anti-tumor activity screening and research on the primary mechanism of dicumarol in vitro[J]. Acta Pharmaceutica Sinica, 2020, 55(12): 2904-2910.

双香豆素体外抗肿瘤活性筛选及相关机制初探
魏静1, 冯跃平1, 郑茜2, 王钦1, 张春1
1. 西南医科大学药学院, 四川 泸州 646000;
2. 四川卫生康复职业学院, 四川 自贡 643000
摘要:
为初步探讨双香豆素抗肿瘤活性及相关机制,采用CCK-8法检测双香豆素对几种肿瘤细胞株生长的影响。以HepG2为研究对象,通过对几种生理生化指标的检测初步探讨其抗肿瘤的相关机制。结果显示,双香豆素对HepG2、Hccc-9810及MDA-MB-231细胞株的生长均呈剂量和时间依赖性的抑制作用,其中HepG2对双香豆素的敏感性最高(IC50=3.19±0.68 μmol·L-1)。双香豆素可使HepG2细胞周期阻滞在S期,使Bcl-2蛋白的表达下调,cleaved caspase-9和Bax蛋白的表达升高。双香豆素可使HepG2细胞内还原型谷胱甘肽(glutathione,GSH)和超氧化物歧化酶(superoxide dismutase,SOD)含量明显降低,丙二醛(malonaldehyde,MDA)和活性氧(reactive oxygen species,ROS)水平明显升高。在低氧诱导下,双香豆素能使HepG2细胞中NAD(P)H醌氧化还原酶1[NAD(P)H quinone oxidoreductase 1,NQO1]、3-磷酸肌醇依赖性蛋白激酶1(3-phosphoinositide-dependent protein kinase 1,PDK1)及缺氧诱导因子1α(hypoxia inducible factor-1α,HIF-1α)表达量下调。上述结果表明,双香豆素可有效抑制HepG2细胞增殖,促进其周期阻滞及细胞凋亡;双香豆素可能通过抑制HepG2细胞中PDK1和NQO1的表达,导致HIF-1α下调、ROS聚集,从而产生细胞氧化应激促使HepG2细胞凋亡。
关键词:    双香豆素      HepG2      凋亡      细胞周期      氧化应激     
Anti-tumor activity screening and research on the primary mechanism of dicumarol in vitro
WEI Jing1, FENG Yue-ping1, ZHENG Xi2, WANG Qin1, ZHANG Chun1
1. Department of Pharmacy, Southwest Medical University, Luzhou 646000, China;
2. Sichuan Vacotional College of Health and Rehabilitation, Zigong 643000, China
Abstract:
To study the anti-tumor activities and the related mechanisms of dicumarol, the CCK-8 method was used to identify anti-tumor activities of dicumarol. HepG2 cells were used to explore the anti-tumor mechanisms by measuring several physiological and biochemical indexes. The results show that dicumarol can significantly inhibit the growth of HepG2, Hccc-9810 and MDA-MB-231 cell lines in a dose-dependent and time-dependent manner, with HepG2 cells showing the greatest sensitivity to dicumarol (with an IC50 value of 3.19±0.68 µmol·L-1 at 48 h). Dicumarol arrested the cell cycle at S phase and down-regulated the expression of anti-apoptotic protein Bcl-2 while promoting the expression of the pro-apoptotic proteins Bax and cleaved caspase-9. Dicumarol significantly decreased the levels of glutathione (GSH) and superoxide dismutase (SOD) in HepG2 cells, and increased the levels of malonaldehyde (MDA) and reactive oxygen species (ROS). Dicumarol also down-regulated the protein levels of NAD(P)H quinone oxidoreductase 1, 3-phosphoinositide-dependent protein kinase 1, and hypoxia inducible factor-1α under hypoxic conditions. The above results show that dicumarol can inhibit the proliferation of HepG2 cells and induce cycle arrest and apoptosis. Dicumarol may down-regulate the expression of HIF-1α by inhibiting the activity of NQO1 and PDK1, which leads to the accumulation of ROS, thereby generating oxidative stress and inducing apoptosis in HepG2 cells.
Key words:    dicumarol    HepG2    apoptosis    cell cycle    oxidative stress   
收稿日期: 2020-04-21
DOI: 10.16438/j.0513-4870.2020-0598
基金项目: 国家自然科学基金资助项目(81001700);四川省青年科技创新研究团队研究项目(2019JDTD0016);泸州市-西南医科大学联合项目(2019LZXNYDJ49).
通讯作者: 张春,Tel:15196088137,E-mail:zc83good@126.com
Email: zc83good@126.com
相关功能
PDF(1028KB) Free
打印本文
0
作者相关文章
魏静  在本刊中的所有文章
冯跃平  在本刊中的所有文章
郑茜  在本刊中的所有文章
王钦  在本刊中的所有文章
张春  在本刊中的所有文章

参考文献:
[1] Li LH, Chen L, Xia YF. Progress in the study of coumarin derivatives as antitumor agents[J]. J Chin Pharm Univ (中国药科大学学报), 2013, 44:374-379.
[2] Dong W, Tang XL, Zhao GW, et al. Effects of coumarins from Angelica dahurica on chemotherapeutic sensitivity of human breast cancer cells[J]. Chin J Clin Pharmacol Ther (中国临床药理学与治疗学), 2019, 24:26-32.
[3] Huang YF. Application of anticancer drugs with coumarin structures[J]. Strait Pharm J (海峡药学), 2015, 27:1-4.
[4] Timson DJ. Dicumarol:a drug which hits at least two very different targets in vitamin K metabolism[J]. Curr Drug Targets, 2017, 18:500-510.
[5] Zhang WJ, Su J, Xu HD, et al. Dicumarol inhibits PDK1 and targets multiple malignant behaviors of ovarian cancer cells[J]. PLoS One, 2017, 12:e0179672.
[6] Matsui Y, Watanabe J, Ding S, et al. Dicumarol enhances doxorubicin-induced cytotoxicity in p53 wild-type urothelial cancer cells through p38 activation[J]. BJU Int, 2010, 105:558-564.
[7] Watanabe J, Nishiyama H, Matsui Y, et al. Dicumarol potentiates cisplatin-induced apoptosis mediated by c-Jun N-terminal kinase in p53 wild-type urogenital cancer cell lines[J]. Oncogene, 2006, 25:2500-2508.
[8] Weng LL, Gao L, Zhang MG. Anticancer effects of deproteinized asparagus polysaccharide on hepatocellular carcinoma cells in hypoxia in vitro [J]. Mod J Integr Chin Trad West Med (现代中西医结合杂志), 2019, 28:2623-2628.
[9] Chen YJ, Liu C Y, Lu MX, et al. Molecular mechanism of deguelin-induced apoptosis and cell cycle arrest in lung cancer cells in vitro [J]. Chin Pharmacol Bull (中国药理学通报), 2019, 35:1109-1114.
[10] Zhang XM, Gao L, Hu X, et al. Effect of tetramethyluyraziee on renal oxidative stress in immune-mediated bone marrow failure mice[J]. Chin Pharmacol Bull (中国药理学通报), 2019, 35:1570-1574.
[11] Lewis A, Ough M, Li L, et al. Treatment of pancreatic cancer cells with dicumarol induces cytotoxicity and oxidative stress[J]. Clin Cancer Res, 2004, 10:4550-4558.
[12] Du J, Daniels DH, Asbury C, et al. Mitochondrial production of reactive oxygen species mediate dicumarol-induced cytotoxicity in cancer cells[J]. J Biol Chem, 2006, 281:37416-37426.
[13] Siegel D, Franklin WA, Ross D. Immunohistochemical detection of NAD(P)H:quinone oxidoreductase in human lung and lung tumors[J]. Clin Cancer Res, 1998, 4:2065-2070.
[14] Gagliardi PA, Puliafito A, Primo L. PDK1:at the crossroad of cancer signaling pathways[J]. Semin Cancer Biol, 2018, 48:27-35.
[15] Ai Y, Zhu B, Ren C, et al. Discovery of new monocarbonyl ligustrazine-curcumin hybrids for intervention of drug-sensitive and drug-resistant lung cancer[J]. J Med Chem, 2016, 59:1747-1760.
相关文献:
1.任春霞, 朱李飞, 余自成.羟苯磺酸钙对顺铂诱导的HK-2细胞凋亡的抑制作用及其机制[J]. 药学学报, 2020,55(8): 1830-1835
2.罗飘, 楚世峰, 高岩, 罗林明, 彭兰, 陈乃宏.人参皂苷Rg1在肝脏疾病中的药理作用研究进展[J]. 药学学报, 2018,53(1): 21-27
3.汪梦霞, 赵静宇, 孙冬梅, 孟祥宝, 孙桂波, 孙晓波.三七总皂苷对6-羟基多巴胺诱导SH-SY5Y细胞损伤的保护作用及可能机制[J]. 药学学报, 2016,51(6): 898-906
4.王琳, 余瑞双, 杨文亮, 栾淑娟, 秦本凯, 庞晓斌, 杜冠华.紫杉醇载药胶束对人肺癌A549细胞增殖与凋亡的影响[J]. 药学学报, 2015,50(10): 1240-1245
5.张彩霞, 刘虹, 宫玉艳, 何红伟, 邵荣光.SphK1抑制剂SKI II抑制肝癌HepG2细胞周期及细胞侵袭[J]. 药学学报, 2014,49(2): 204-208
6.韩苗苗, 王文飞, 刘铭瑶, 李德山, 周兵, 于引航, 任桂萍.FGF-21对H2O2诱导的大鼠心肌细胞H9c2氧化应激损伤的保护作用[J]. 药学学报, 2014,49(4): 470-475
7.崔朴梅, 舒丽, 刘菲, 杨俊卿, 宋杨, 孙文娟.新型环磷酰胺类衍生物9b体内外抗肿瘤作用[J]. 药学学报, 2014,49(1): 44-49
8.侯莉莉, 许秋菊, 胡国强, 谢松强.丹参酮ⅡA增强顺铂抗前列腺癌作用及分子机制研究[J]. 药学学报, 2013,48(5): 675-679
9.王天晓, 时小燕, 刘迎滑.内源性胱硫脒-γ-裂解酶/硫化氢调控HepG2细胞凋亡[J]. 药学学报, 2013,48(8): 1233-1240
10.钟树志, 马世平, 洪宗元.芍药苷活化Nrf2/ARE通路减轻Aβ(1−42)诱导的大鼠海马神经元损伤[J]. 药学学报, 2013,48(8): 1353-1357
11.刘亮亮,陈娜,袁萱,姚瑛,张波,郑秋生.维康醇抑制白血病HL-60细胞增殖机制研究[J]. 药学学报, 2012,47(11): 1477-1482
12.陈莉 尚娟 王志凤 张奕华 田季德.硝酸酯/齐墩果酸杂合物的合成及HepG2细胞凋亡抑制活性的研究[J]. 药学学报, 2010,45(12): 1516-1522
13.谢松强 李 骞 马红霞 张亚宏 王建红 赵 瑾 王超杰.多胺缀合物WJH-6诱导白血病细胞凋亡机制研究[J]. 药学学报, 2010,45(4): 451-455
14.蒋国松;童强松;曾甫清;胡波;郑丽端;蔡嘉斌;刘媛.茉莉酸甲酯诱导人神经母细胞瘤细胞株BE(2)-C凋亡作用机制[J]. 药学学报, 2008,43(6): 584-590
15.杨华1;2;4;蔡于琛;庞冀燕;李永强;曾昭蕾;许遵乐;冼励坚.苯并呋喃类木脂素衍生物通过抑制细胞周期蛋白质活性诱导MCF-7细胞G2/M期阻滞及凋亡[J]. 药学学报, 2008,43(2): 138-144
16.张斌;魏欣冰;刘慧青;王立祥;孙茹;张岫美.羟乙基葛根素对脑星形胶质细胞氧化性损伤的保护作用[J]. 药学学报, 2006,41(2): 171-174
17.李剑;左路;沈悌;张之南.亚硒酸钠诱导人急性早幼粒细胞白血病细胞株NB4细胞氧化应激和细胞凋亡[J]. 药学学报, 2002,37(9): 677-681