药学学报, 2020, 55(12): 2976-2981
引用本文:
李晓瑞, 邓权锋, 罗勇, 林炳承, 赵伟杰, 张秀莉. 生物打印HepG2细胞用于二氢卟酚e6的声动力抗癌活性研究[J]. 药学学报, 2020, 55(12): 2976-2981.
LI Xiao-rui, DENG Quan-feng, LUO Yong, LIN Bing-cheng, ZHAO Wei-jie, ZHANG Xiu-li. Bioprinted HepG2 cells for studying sonodynamic anticancer activity of chlorine e6[J]. Acta Pharmaceutica Sinica, 2020, 55(12): 2976-2981.

生物打印HepG2细胞用于二氢卟酚e6的声动力抗癌活性研究
李晓瑞1, 邓权锋2, 罗勇1, 林炳承3, 赵伟杰1, 张秀莉2
1. 大连理工大学, 辽宁 大连 116024;
2. 苏州大学, 江苏 苏州 215123;
3. 中国科学院大连化学物理研究所, 辽宁 大连 116023
摘要:
本研究利用生物打印技术构建了HepG2三维肿瘤组织用于声敏药物二氢卟酚e6(chlorine e6,Ce6)的声动力抗癌活性研究。以海藻酸/明胶/羟乙基纤维素的复合生物材料作为生物墨水,3D打印了HepG2肿瘤细胞,Live-Dead试剂盒检测细胞存活率,MTT法检测细胞增殖情况,考察打印后细胞活力。自主搭建了微型超声装置,利用声能转换热能引起的温度改变,估算装置不同功率下的超声强度。14.3和28.6 μg·mL-1的Ce6作用于二维培养和三维打印的HepG2细胞,以0.15 W·cm2的超声强度作用60 s,MTT法检测Ce6的抗肿瘤活性。结果显示,打印的HepG2细胞活性高达95%,培养7天开始形成肿瘤微球。装置最大超声强度低于3 W·cm2,对正常肝细胞LO2无损伤。通过比较Ce6对2D培养和打印的HepG2细胞抗癌活性大小,发现三维HepG2肿瘤的Ce6声动力抗癌活性较2D培养降低了63.4%,显示了三维肿瘤的耐声敏药性,为声动力疗法体外三维肿瘤模型的发展提供了可能性。
关键词:    生物打印      生物相容性材料      肝肿瘤      抗肿瘤药      超声疗法     
Bioprinted HepG2 cells for studying sonodynamic anticancer activity of chlorine e6
LI Xiao-rui1, DENG Quan-feng2, LUO Yong1, LIN Bing-cheng3, ZHAO Wei-jie1, ZHANG Xiu-li2
1. Dalian University of Technology, Dalian 116024, China;
2. Soochow University, Suzhou 215123, China;
3. Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
Abstract:
This paper showed bioprinted HepG2 tumor tissues used for studying the sonodynamic anticancer activity of chlorine e6 (Ce6). HepG2 cells were printed by using alginate/gelatin/hydroxyethyl cellulose composite biomaterial as bio ink and cell viability was detected with Live-Dead assay and MTT proliferation. The ultrasonic intensities of self-built micro ultrasonic device under different powers were estimated by using the temperature change caused by the conversion of acoustic energy to heat energy. Ce6 of 14.3 and 28.6 μg·mL-1 were acted on two-dimensional cultured and three-dimensional printed HepG2 cells, and the antitumor activity of Ce6 was detected by MTT method with ultrasound intensity of 0.15 W·cm2 for 60 s. The results showed that the activities of bioprinted HepG2 cells were as high as 95%, and tumor microspheres were formed after 7 days of culture. The ultrasound intensity was lower than 3 W·cm2, which belonged to low ultrasound intensity and had no damage to normal hepatocyte LO2 cells. By comparing the antitumor activity of Ce6 on 2D cultured and printed HepG2 cells, it was found that the anticancer activity of Ce6 on bioprinted HepG2 cells was 63.4% lower than that on 2D culture cells, indicating the acoustic drug resistance of three-dimensional tumor model. Bioprinted tumor tissues show the potential in the application of in vitro activity evaluation models for sonodynamic therapy.
Key words:    bioprinting    biocompatible material    liver neoplasm    antineoplastic agent    ultrasound therapy   
收稿日期: 2020-05-17
DOI: 10.16438/j.0513-4870.2020-0755
基金项目: 国家自然科学基金资助项目(21675017);国家重点研究开发计划项目(2017YFC1702001).
通讯作者: 罗勇,Tel:86-411-84986195,E-mail:yluo@dlut.edu.cn;赵伟杰,E-mail:zyzhao@dlut.edu.cn
Email: yluo@dlut.edu.cn;zyzhao@dlut.edu.cn
相关功能
PDF(798KB) Free
打印本文
0
作者相关文章
李晓瑞  在本刊中的所有文章
邓权锋  在本刊中的所有文章
罗勇  在本刊中的所有文章
林炳承  在本刊中的所有文章
赵伟杰  在本刊中的所有文章
张秀莉  在本刊中的所有文章

参考文献:
[1] Torre LA, Siegel RL, Ward EM, et al. Global cancer incidence and mortality rates and trends-an update[J]. Cancer Epidemiol Biomarkers Prev, 2016, 25:16-27.
[2] Zhou Y, Dai JY, Bi LJ. Research progress of sonodynamic therapy[J]. Med Recapitul (医学综述), 2019, 25:2588-2592.
[3] Rosenthal I, Sostaric JZ, Riesz P. Sonodynamic therapy-a review of the synergistic effects of drugs and ultrasound[J]. Ultrason Sonochem, 2004, 11:349-363.
[4] Trendowski M. The promise of sonodynamic therapy[J]. Cancer Metast Rev, 2014, 33:143-160.
[5] Bilmin K, Kujawska T, Grieb P. Sonodynamic therapy for gliomas. Perspectives and prospects of selective sonosensitization of glioma cells[J]. Cells (Basel), 2019, 8:1428.
[6] Lafond M, Yoshizawa S, Umemura S. Sonodynamic therapy:advances and challenges in clinical translation[J]. J Ultras Med, 2019, 38:567-580.
[7] van den Brand D, Massuger LF, Brock R, et al. Mimicking tumors:toward more predictive in vitro models for peptide- and protein-conjugated drugs[J]. Bioconjug Chem, 2017, 28:846-856.
[8] Fong ELS, Harrington DA, Farach-Carson MC, et al. Heralding a new paradigm in 3D tumor modeling[J]. Biomaterials, 2016, 108:197-213.
[9] Yamada KM, Cukierman E. Modeling tissue morphogenesis and cancer in 3D[J]. Cell, 2007, 130:601-610.
[10] Murphy SV, Atala A. 3D bioprinting of tissues and organs[J]. Nat Biotechnol, 2014, 32:773-785.
[11] Liaw C, Ji S, Guvendiren M. Engineering 3D hydrogels for personalized in vitro human tissue models[J]. Adv Healthc Mater, 2018.DOI:10.1002/adhm.201701165.
[12] Knowlton S, Onal S, Yu CH, et al. Bioprinting for cancer research[J]. Trends Biotechnol, 2015, 33:504-513.
[13] Zhang YS, Duchamp M, Oklu R, et al. Bioprinting the cancer microenvironment[J]. ACS Biomater Sci Eng, 2016, 2:1710-1721.
[14] Swaminathan S, Hamid Q, Sun W, et al. Bioprinting of 3D breast epithelial spheroids for human cancer models[J]. Biofabrication, 2019, 11:25003.
[15] Langer EM, Allen-Petersen BL, King SM, et al. Modeling tumor phenotypes in vitro with three-dimensional bioprinting[J]. Cell Rep, 2019, 26:608-623.
[16] Wang Y, Shi W, Kuss M, et al. 3D bioprinting of breast cancer models for drug resistance study[J]. ACS Biomater Sci Eng, 2018, 4:4401-4411.
[17] Wu Y, Lin ZY, Wenger AC, et al. 3D bioprinting of liver-mimetic construct with alginate/cellulose nanocrystal hybrid bioink[J]. Bioprinting, 2018, 9:1-6.
[18] Gou ML, Qu X, Zhu W, et al. Bio-inspired detoxification using 3D-printing hydrogel nanocomposites[J]. Nat Commun, 2014, 5:3774.
[19] Iqbal S, Fakhar-e-Alam M, Atif M, et al. Empirical modeling of Zn/ZnO nanoparticles decorated/conjugated with fotolon (chlorine e6) based photodynamic therapy towards liver cancer treatment[J]. Micromachines (Basel), 2019, 10:60.
[20] Xu P, Yao J, Li Z, et al. Therapeutic effect of doxorubicin-chlorin e6-loaded mesoporous silica nanoparticles combined with ultrasound on triple-negative breast cancer[J]. Int J Nanomed, 2020, 15:2659-2668.
[21] Zheng RN, Zhang WM, Wang XJ, et al. The sonodynamic effects of chlorin e6 on the proliferation of human lung adenocarcinoma cell SPCA-1[J]. Chin J Lung Cancer (中国肺癌杂志), 2010, 13:201-205.
[22] Gao HJ, Zhang WM, Wang XH, et al. The sonodynamic effect of chlorin-e6 on the proliferation of human breast cancer cells MDA-MB-231[J]. Tumor (肿瘤), 2010, 30:175-179.
[23] Cui XY, Zhu SJ, Cui LX, et al. Sonodynamic therapy with chlorin e6 for ehrlich ascites tumor-bearing mice[J]. Acta Lab Animal Sci Sin (中国实验动物学报), 2011, 19:451-455.
[24] Liu D, Zhang WM, Wang XH, et al. The sonodynamic effects of chlorin e6 on S180 sarcoma in mice[J]. Chin J Ultrasound Med (中国超声医学杂志), 2012, 28:961-963.
[25] Yu TH, Wang ZB, Mason TJ. A review of research into the uses of low level ultrasound in cancer therapy[J]. Ultrason Sonochem, 2004, 11:95-103.
[26] Toniatti C, Jones P, Graham H, et al. Oncology drug discovery:planning a turnaround[J]. Cancer Discov, 2014, 4:397-404.
[27] Chen FF, Li XX, Li S, et al. Advances in tumor microenvironment and related targeted drugs[J]. Acta Pharm Sin (药学学报), 2018, 53:676-683.
[28] Farrakhova DS, Yakovlev DV, Maklygina YS, et al. The research of chlorine e6 distribution and accumulation in multicellular tumor spheroid model[J]. Opt Quant Electron, 2020. DOI:10.1007/s11082-020-2218-9.
[29] Kumari P, Paul M, Bhatt H, et al. Chlorin e6 conjugated methoxy-poly(ethylene glycol)-poly(d,l-lactide) glutathione sensitive micelles for photodynamic therapy[J]. Pharm Res, 2020, 37:18.
[30] He QY. Tumor heterogeneity and drug resistance of targeted antitumor agents[J]. Acta Pharm Sin (药学学报), 2016, 51:197-201.