药学学报, 2020, 55(12): 2982-2988
引用本文:
谭政委, 李磊, 杨红旗, 余永亮, 许兰杰, 董薇, 夏伟, 马新明, 梁慧珍. 茉莉酸甲酯诱导和不同花色红花中羟基红花黄色素A积累差异的机制分析[J]. 药学学报, 2020, 55(12): 2982-2988.
TAN Zheng-wei, LI Lei, YANG Hong-qi, YU Yong-liang, XU Lan-jie, DONG Wei, XIA Wei, MA Xin-ming, LIANG Hui-zhen. The mechanism of methyl jasmonate-induced accumulation of hydroxysafflor yellow A in safflower of different colors[J]. Acta Pharmaceutica Sinica, 2020, 55(12): 2982-2988.

茉莉酸甲酯诱导和不同花色红花中羟基红花黄色素A积累差异的机制分析
谭政委1, 李磊1, 杨红旗1, 余永亮1, 许兰杰1, 董薇1, 夏伟1, 马新明2, 梁慧珍1
1. 河南省农业科学院芝麻研究中心, 河南 郑州 450002;
2. 河南农业大学信息与管理科学学院, 河南 郑州 450002
摘要:
通过分析茉莉酸甲酯(methyl jasmonate,MeJA)处理对羟基红花黄色素A(hydroxysafflor yellow A,HSYA)生物合成相关基因表达影响及不同花色HSYA生物合成相关基因表达差异,为HSYA生物合成及调控提供参考。首先用0、50、100、200 μmol·L-1的MeJA对离体培养的红花花冠进行处理,找出最适MeJA处理浓度,然后用100 μmol·L-1 MeJA处理红花,在处理后的0、3、6、12、24 h不同时间点采样,用高效液相色谱法对HSYA的含量进行定量分析,找出最佳处理时间;以100 μmol·L-1 MeJA处理6 h的红花花冠提取RNA,通过qRT-PCR对参与HSYA生物合成的关键基因进行定量分析,找出表达差异基因;用HPLC和qRT-PCR对不同花色红花品系的HSYA含量及其相关合成基因进行定量分析,找出差异基因。结果表明,不同浓度的MeJA处理均能够显著增加HSYA的积累,其中100 μmol·L-1 MeJA处理6 h后HSYA的含量达到最高峰。qRT-PCR结果显示,MeJA处理红花花冠能够显著提高HSYA合成关键基因PAL2PAL44CL24CL44CL5CHS3CHS4CHI2的转录水平。不同花色红花中HSYA含量不同,呈现红色 > 橙黄色 > 黄色 > 白色的趋势,qRT-PCR结果表明CHS1CHI2在红色、橙黄色、黄色红花中的表达量明显高于白色。以上研究表明MeJA对HSYA合成的调控主要通过影响PAL2PAL44CL24CL44CL5CHS3CHS4CHI2的转录水平来实现;CHS1CHI2的基因表达差异是不同花色红花HSYA含量不同的主要因素。
关键词:    红花      茉莉酸甲酯      羟基红花黄色素A      表达差异     
The mechanism of methyl jasmonate-induced accumulation of hydroxysafflor yellow A in safflower of different colors
TAN Zheng-wei1, LI Lei1, YANG Hong-qi1, YU Yong-liang1, XU Lan-jie1, DONG Wei1, XIA Wei1, MA Xin-ming2, LIANG Hui-zhen1
1. Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China;
2. College of Information and Management Science, Henan Agricultural University, Zhengzhou 450002, China
Abstract:
To explore the mechanism hydroxysafflor yellow A (HSYA) biosynthesis and regulation, the effect of methyl jasmonate (MeJA) treatment on gene expression related to the biosynthesis of hydroxysafflor yellow A (HSYA) was analyzed, and expression differences in genes involved in HSYA biosynthesis in safflower of different colors was quantified. MeJA at concentrations of 0, 50, 100, and 200 μmol·L-1 was sprayed onto safflower florets to determine the optimal concentration of MeJA. Safflower was treated with 100 μmol·L-1 MeJA and florets were harvested 0, 3, 6, 12 and 24 h after treatment. The content of MeJA was determined by high performance liquid chromatography (HPLC). RNA was extracted from safflower florets treated with 100 μmol·L-1 MeJA for 6 h. The transcription of key genes involved in the biosynthesis of HSYA was quantified by qRT-PCR and differentially expressed genes were identified. The content of HSYA increased after treatment with MeJA, with 100 μmol·L-1 MeJA treatment for 6 h having the greatest effect on HSYA accumulation. qRT-PCR results showed that MeJA could significantly increase the transcription of HSYA biosynthesis genes including PAL2, PAL4, 4CL2, 4CL4, 4CL5, CHS3, CHS4 and CHI2. The content of HSYA differed between safflowers of different colors with a trend of red > orange-yellow > yellow > white. The results of qRT-PCR showed that the expression of CHS1 and CHI2 in red, orange and yellow safflower was significantly higher than that in white safflower. These results indicate that MeJA promotes the accumulation of HSYA by up-regulating the expression of genes involved in the biosynthesis of HSYA such as PAL2, PAL4, 4CL2, 4CL4, 4CL5, CHS3, CHS4 and CHI2, and the variation of HSYA content in safflower of different colors was related to a difference in the level of expression of CHS1 and CHI2.
Key words:    safflower    methyl jasmonate    hydroxysafflor yellow A    expression difference   
收稿日期: 2020-05-09
DOI: 10.16438/j.0513-4870.2020-0705
基金项目: 现代农业产业技术体系建设专项资金资助(CARS-21);河南省农科院创新创意项目(2020CX03);河南省农科院优秀青年基金项目(2020YQ05,2020YQ28);河南省博士后基金项目(001803053);国家农业科研杰出人才及其创新团队“特种油料作物品质改良创新团队”[农财发(2016)45号].
通讯作者: 梁慧珍,Tel:86-371-65738565,E-mail:lhzh66666@163.com
Email: lhzh66666@163.com
相关功能
PDF(772KB) Free
打印本文
0
作者相关文章
谭政委  在本刊中的所有文章
李磊  在本刊中的所有文章
杨红旗  在本刊中的所有文章
余永亮  在本刊中的所有文章
许兰杰  在本刊中的所有文章
董薇  在本刊中的所有文章
夏伟  在本刊中的所有文章
马新明  在本刊中的所有文章
梁慧珍  在本刊中的所有文章

参考文献:
[1] Pearl SA, Bowers JE, Reyes-Chin-Wo S, et al. Genetic analysis of safflower domestication[J]. BMC Plant Biol, 2014, 14:43.
[2] Pearl SA, Burke JM. Genetic diversity in Carthamus Tinctorius (Asteraceae; safflower), an underutilized oilseed crop[J]. Am J Bot, 2014, 101:1640-1650.
[3] Chinese Pharmacopoeia Commission. Pharmacopoeia of the People's Republic of China (中华人民共和国药典)[S]. Vol 1. Beijing:China Medical Science Press, 2015.
[4] Li CY, Yin JG, Zhang J, et al. Pharmacokinetic profiles of hydroxysafflor yellow A following intravenous administration of its pure preparations in healthy Chinese volunteers[J]. J Ethnopharmacol, 2015, 162:225-230.
[5] Chen Z, Liu L, Liu Y, et al. Hydroxysafflor yellow A induces autophagy in human liver cancer cells by regulating Beclin 1 and ERK expression[J]. Exp Ther Med, 2020, 19:2989-2996.
[6] Kazuma K, Takahashi T, Sato K, et al. Quinochalcones and flavonoids from fresh florets in different cultivars of Carthamus tinctorius L[J]. Biosci Biotechnol Biochem, 2000, 64:1588-1599.
[7] Li H, Dong Y, Yang J, et al. De novo transcriptome of safflower and the identification of putative genes for oleosin and the biosynthesis of flavonoids[J]. PLoS One, 2012, 7:e30987.
[8] Winkel-Shirley B. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology[J]. Plant Physiol, 2001, 126:485-493.
[9] Chen GJ, Liu HP, Wei Q, et al. The acyl-activating enzyme PhAAE13 is an alternative enzymatic source of precursors for anthocyanin biosynthesis in petunia flowers[J]. J Exp Bot, 2017, 68:457-467.
[10] Dehghan S, Sadeghi M, Poppel A, et al. Differential inductions of phenylalanine ammonialyase and chalcone synthase during wounding, salicylic acid treatment, and salinity stress in safflower, Carthamus tinctorius[J]. Biosci Rep, 2014, 34:e00114.
[11] Howe G, Jander G. Plant immunity to insect herbivores[J]. Annu Rev Plant Biol, 2008, 59:41-66.
[12] Glazebrook J. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens[J]. Annu Rev Phytopathol, 2005, 43:205-227.
[13] Browse J, Howe GA. New weapons and a rapid response against insect attack[J]. Plant Physiol, 2008, 146:832-838.
[14] Browse J. Jasmonate:an oxylipin signal with many roles in plants[J]. Vitam Horm, 2005, 72:431-456.
[15] Luo XP, Zhu DY, Huang YJ, et al. Effects of methyl jasmonate accumulation of flavonoids and related gene expression of Buckwheat Sprouts[J]. Gen Appl Biol (基因组学与应用生物学), 2015, 34:1040
[16] Wang XY, Cui GH, Huang LQ, et al. Effects of methyl jasmonat on accumulation and release of tanshiones in suspension cultures on Salvia miltiorrhiza hairy root[J]. China J Chin Mater Med (中国中药杂志), 2007, 32:300-302.
[17] Peng L, Yan YG, Chen Y, et al. Transcriptome analysis of Polygala tenuifolia seedlings induced by methyl jasmonate and mining of key genes for triterpenoid biosynthetic pathway[J]. Chin Tradit Herb Drugs (中草药), 2020, 51:2517-2529.
[18] Xu LJ, Liang HZ, Yu YL, et al. Carthamus tinctorius L.:evaluation on correlations of hydroxysafflor with flower color and the difference among cultivars[J]. Chin Agric Sci Bull (中国农学通报), 2018, 34:41-45.
[19] He BX, Xue YR, Tu YH, et al. CtCHS4induces the accumulation of safflower quinone chalcones in response to methyl jasmonate induction[J]. Acta Pharm Sin (药学学报), 2018, 53:636-645.
[20] Chen J, Tang XH, Ren CX, et al. Full-length transcriptome sequences and the identification of putative genes for flavonoid biosynthesis in safflower[J]. BMC Genomics, 2018, 19:548.
[21] Guo DD, Xue YR, Li DQ, et al. Overexpression of CtCHS1 increases accumulation of quinochalcone in safflower[J]. Front Plant Sci, 2017, 8:1409.
[22] Zhang LL, Tian K, Tang ZH, et al. Phytochemistry and pharmacology of Carthamus tinctorius L[J]. Am J Chin Med, 2016, 44:197-226.
[23] Li CY, Yin JG, Zhang J. Pharmacokinetic profiles of hydroxysafflor yellow A following intravenous administration of its pure preparations in healthy Chinese volunteers[J]. J Ethnopharmacol, 2015, 162:225-230.
[24] Su P, Guan HY, Zhao YJ, et al. Identification and functional characterization of diterpene synthases for triptolide biosynthesis from Tripterygium wilfordii[J]. Plant J, 2018, 93:50-65.
相关文献:
1.魏紫奕, 徐文娟, 董姣姣, 刘洁, 贾志鑫, 陈奕君, 王明霞, 阳娇, 肖红斌.羟基红花黄色素A对动脉粥样硬化早期脂肪酸的调控研究[J]. 药学学报, 2018,53(10): 1680-1688
2.何贝轩, 薛英茹, 涂燕华, 高越, 郭美丽.CtCHS4响应茉莉酸甲酯诱导促进了红花醌式查尔酮类化合物的积累[J]. 药学学报, 2018,53(4): 636-645
3.牛凯, 赵永见, 张雷, 李晨光, 王拥军, 郑为超.苦杏仁苷联合羟基红花黄色素A对IL-1β诱导的大鼠椎间盘软骨终板细胞的影响[J]. 药学学报, 2014,49(8): 1136-1142
4.吴 伟 金 鸣 童 静 王晓菲 臧宝霞.羟基红花黄色素A缓解脂多糖诱导家兔白细胞活化的作用[J]. 药学学报, 2011,46(2): 153-157
5.王晓菲 金鸣 童静 吴伟 李金荣 臧宝霞.羟基红花黄色素A对油酸-脂多糖所致大鼠急性肺损伤的保护作用[J]. 药学学报, 2010,45(7): 940-944
6.连泽勤;赵大龙;朱海波.羟基红花黄色素A上调低氧状态下血管内皮细胞中缺氧诱导因子-1α的表达[J]. 药学学报, 2008,43(5): 484-489
7.陈亭亭;杜玉娟;刘晓雷;朱海波.羟基红花黄色素A对脑缺血大鼠皮层炎症信号转导途径相关因子的抑制作用[J]. 药学学报, 2008,43(6): 570-575
8.朱海波;王振华;田京伟;傅风华;刘坷;李长龄.羟基红花黄色素A对实验性脑缺血的保护作用[J]. 药学学报, 2005,40(12): 1144-1146
9.田京伟;傅风华;蒋王林;王超云;孙芳;张太平.羟基红花黄色素A对脑缺血所致大鼠脑线粒体损伤的保护作用[J]. 药学学报, 2004,39(10): 774-777
10.臧宝霞;金鸣;司南;张彦;吴伟;朴永哲.羟基红花黄色素A对血小板活化因子的拮抗作用[J]. 药学学报, 2002,37(9): 696-699