药学学报, 2021, 56(2): 403-413
段雨婷, 蒙凌华. 多靶点抗肿瘤天然产物研究进展[J]. 药学学报, 2021, 56(2): 403-413.
DUAN Yu-ting, MENG Ling-hua. Research progress in multi-targeted anti-tumor natural products[J]. Acta Pharmaceutica Sinica, 2021, 56(2): 403-413.

段雨婷1,2, 蒙凌华1,2
1. 中国科学院上海药物研究所, 上海 201203;
2. 中国科学院大学, 北京 100049
关键词:    多靶点      抗肿瘤药物      天然产物      靶点确证      结构优化     
Research progress in multi-targeted anti-tumor natural products
DUAN Yu-ting1,2, MENG Ling-hua1,2
1. Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China
Natural products and their derivatives are important components of anti-tumor drugs. Currently, anti-tumor drugs derived from natural products which are in clinical practice are mainly conventional cytotoxic or molecularly targeted drugs. Their application is limited by drug-related side effects and drug resistance. Recent studies have shown that anti-tumor natural products often act on multiple targets in tumor cells and in turn interfere with multiple processes in tumorigenesis and development. As tumor is a systemic disease induced by multiple factors, multi-targeted natural products possess unique potential in tumor therapy. However, the targets and mechanisms of the discovered multi-targeted antitumor natural products remain elusive, which limits their further development and application. This review summarized the research progress in the mechanism of action, target identification, and structure optimization of multi-targeted anti-tumor natural products exemplified by a few typical compounds. The research and development of these agents have also been proposed.
Key words:    multi-targeted    anti-tumor drug    natural product    target validation    structure optimization   
收稿日期: 2020-07-22
DOI: 10.16438/j.0513-4870.2020-1224
基金项目: 国家自然科学基金资助项目(81773760).
通讯作者: 蒙凌华,Tel:86-21-50801669,E-mail:lhmeng@simm.ac.cn
Email: lhmeng@simm.ac.cn
PDF(1006KB) Free
段雨婷  在本刊中的所有文章
蒙凌华  在本刊中的所有文章

[1] Newman DJ, Cragg GM. Natural products as sources of new drugs from 1981 to 2014[J]. J Nat Prod, 2016, 79:629-661.
[2] Tian XH, Wu JH. Tanshinone derivatives:a patent review (January 2006-September 2012)[J]. Expert Opin Ther Pat, 2013, 23:19-29.
[3] Ren X, Wang C, Xie B, et al. Tanshinone IIA induced cell death via miR30b-p53-PTPN11/SHP2 signaling pathway in human hepatocellular carcinoma cells[J]. Eur J Pharmacol, 2017, 796:233-241.
[4] Shin DS, Kim HN, Shin KD, et al. Cryptotanshinone inhibits constitutive signal transducer and activator of transcription 3 function through blocking the dimerization in DU145 prostate cancer cells[J]. Cancer Res, 2009, 69:193-202.
[5] Zhang X, Zhou Y, Gu YE. Tanshinone IIA induces apoptosis of ovarian cancer cells in vitro and in vivo through attenuation of PI3K/AKT/JNK signaling pathways[J]. Oncol Lett, 2019, 17:1896-1902.
[6] Zhang P, Pei Y, Qi Y. Influence of blood-activating drugs on adhesion and invasion of cells in lung cancer patients[J]. Chin J Integr Tradit West Med (中国中西医结合杂志), 1999, 19:103-105.
[7] Don MJ, Liao JF, Lin LY, et al. Cryptotanshinone inhibits chemotactic migration in macrophages through negative regulation of the PI3K signaling pathway[J]. Br J Pharmacol, 2007, 151:638-646.
[8] Chen SJ. Drug-target networks for tanshinone IIA identified by data mining[J]. Chin J Nat Med, 2015, 13:751-759.
[9] Yuan DP, Long J, Lu Y, et al. The forecast of anticancer targets of cryptotanshinone based on reverse pharmacophore-based screening technology[J]. Chin J Nat Med (中国天然药物), 2014, 12:443-448.
[10] Wu Q, Zheng K, Huang X, et al. Tanshinone-IIA-based analogues of imidazole alkaloid act as potent inhibitors to block breast cancer invasion and metastasis in vivo[J]. J Med Chem, 2018, 61:10488-10501.
[11] Zhou ZY, Zhao WR, Zhang J, et al. Sodium tanshinone IIA sulfonate:a review of pharmacological activity and pharmacokinetics[J]. Biomed Pharmacother, 2019, 118:109362.
[12] Feng T, Wei Y, Lee RJ, et al. Liposomal curcumin and its application in cancer[J]. Int J Nanomedicine, 2017, 12:6027-6044.
[13] Zhao G, Han X, Zheng S, et al. Curcumin induces autophagy, inhibits proliferation and invasion by downregulating AKT/mTOR signaling pathway in human melanoma cells[J]. Oncol Rep, 2016, 35:1065-1074.
[14] Galluzzi L, Bravo-San Pedro JM, Levine B, et al. Pharmacological modulation of autophagy:therapeutic potential and persisting obstacles[J]. Nat Rev Drug Discov, 2017, 16:487-511.
[15] Ornelas IM, Silva TM, Fragel-Madeira L, et al. Inhibition of PI3K/Akt pathway impairs G2/M transition of cell cycle in late developing progenitors of the avian embryo retina[J]. PLoS One, 2013, 8:e53517.
[16] Sardiello M. Transcription factor EB:from master coordinator of lysosomal pathways to candidate therapeutic target in degenerative storage diseases[J]. Ann N Y Acad Sci, 2016, 1371:3-14.
[17] Zhang Y, Chen P, Hong H, et al. JNK pathway mediates curcumin-induced apoptosis and autophagy in osteosarcoma MG63 cells[J]. Exp Ther Med, 2017, 14:593-599.
[18] Fu H, Wang C, Yang D, et al. Curcumin regulates proliferation, autophagy, and apoptosis in gastric cancer cells by affecting PI3K and P53 signaling[J]. J Cell Physiol, 2018, 233:4634-4642.
[19] Neerati P, Sudhakar YA, Kanwar JR. Curcumin regulates colon cancer by inhibiting P-glycoprotein in in-situ cancerous colon perfusion rat model[J]. J Cancer Sci Ther, 2013, 5:313-319.
[20] Wang J, Gao L, Lee YM, et al. Target identification of natural and traditional medicines with quantitative chemical proteomics approaches[J]. Pharmacol Therapeut, 2016, 162:10-22.
[21] Wang J, Zhang J, Zhang CJ, et al. In situ proteomic profiling of curcumin targets in hct116 colon cancer cell line[J]. Sci Rep, 2016, 6:22146.
[22] Teng YN, Hsieh YW, Hung CC, et al. Demethoxycurcumin modulates human P-glycoprotein function via uncompetitive inhibition of ATPase hydrolysis activity[J]. J Agric Food Chem, 2015, 63:847-855.
[23] Wang X, Zhang Y, Zhang X, et al. The curcumin analogue hydrazinocurcumin exhibits potent suppressive activity on carcinogenicity of breast cancer cells via STAT3 inhibition[J]. Int J Oncol, 2012, 40:1189-1195.
[24] Diaz-Gerevini GT, Repossi G, Dain A, et al. Beneficial action of resveratrol:how and why?[J]. Nutrition, 2016, 32:174-178.
[25] Lei MJ, Dong Y, Sun CX, et al. Resveratrol inhibits proliferation, promotes differentiation and melanogenesis in HT-144 melanoma cells through inhibition of MEK/ERK kinase pathway[J]. Microb Pathog, 2017, 111:410-413.
[26] Buhrmann C, Yazdi M, Popper B, et al. Evidence that TNF-β induces proliferation in colorectal cancer cells and resveratrol can down-modulate it[J]. Exp Biol Med, 2019, 244:1-12.
[27] Kim CW, Hwang KA, Choi KC. Anti-metastatic potential of resveratrol and its metabolites by the inhibition of epithelial-mesenchymal transition, migration, and invasion of malignant cancer cells[J]. Phytomedicine, 2016, 23:1787-1796.
[28] Gao Q, Yuan Y, Gan HZ, et al. Resveratrol inhibits the hedgehog signaling pathway and epithelial-mesenchymal transition and suppresses gastric cancer invasion and metastasis[J]. Oncol Lett, 2015, 9:2381-2387.
[29] Tang FY, Chiang EP, Sun YC. Resveratrol inhibits heregulin-β1-mediated matrix metalloproteinase-9 expression and cell invasion in human breast cancer cells[J]. J Nutr Biochem, 2008, 19:287-294.
[30] Pollard JW. Tumour-educated macrophages promote tumour progression and metastasis[J]. Nat Rev Cancer, 2004, 4:71-78.
[31] Cao Z, Fang J, Xia C, et al. trans-3,4,5'-Trihydroxystibene inhibits hypoxia-inducible factor 1alpha and vascular endothelial growth factor expression in human ovarian cancer cells[J]. Clin Cancer Res, 2004, 10:5253-5263.
[32] Howitz KT, Bitterman KJ, Cohen HY, et al. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan[J]. Nature, 2003, 425:191-196.
[33] Park SJ, Ahmad F, Philp A, et al. Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases[J]. Cell, 2012, 148:421-433.
[34] Lomenick B, Hao R, Jonai N, et al. Target identification using drug affinity responsive target stability (DARTS)[J]. Proc Natl Acad Sci U S A, 2009, 106:21984-21989.
[35] Ko JH, Sethi G, Um JY, et al. The role of resveratrol in cancer therapy[J]. Int J Mol Sci, 2017, 18:2589.
[36] Walle T. Bioavailability of resveratrol[J]. Ann N Y Acad Sci, 2011, 1215:9-15.
[37] Zhang JF. A Detailed Chronological Record of Project 523 and the Discovery and Development of Qinghaosu (Artemisinin) (迟到的报告-五二三项目与青蒿素研发纪实)[M]. Guangzhou:Yangcheng Evening News Publishing Company, 2006:17.
[38] Winzeler EA, Manary MJ. Drug resistance genomics of the antimalarial drug artemisinin[J]. Genome Biol, 2014, 15:544.
[39] Cui L, Su XZ. Discovery, mechanisms of action and combination therapy of artemisinin[J]. Expert Rev Anti Infect Ther, 2009, 7:999-1013.
[40] Mercer AE, Maggs JL, Sun XM, et al. Evidence for the involvement of carbon-centered radicals in the induction of apoptotic cell death by artemisinin compounds[J]. J Biol Chem, 2007, 282:9372-9382.
[41] Efferth T, Benakis A, Romero MR, et al. Enhancement of cytotoxicity of artemisinins toward cancer cells by ferrous iron[J]. Free Radic Biol Med, 2004, 37:998-1009.
[42] Stockwin LH, Han B, Yu SX, et al. Artemisinin dimer anticancer activity correlates with heme-catalyzed reactive oxygen species generation and endoplasmic reticulum stress induction[J]. Int J Cancer, 2009, 125:1266-1275.
[43] Lu JJ, Meng LH, Cai YJ, et al. Dihydroartemisinin induces apoptosis in HL-60 leukemia cells dependent of iron and p38 mitogen-activated protein kinase activation but independent of reactive oxygen species[J]. Cancer Biol Ther, 2008, 7:1017-1023.
[44] Handrick R, Ontikatze T, Bauer KD, et al. Dihydroartemisinin induces apoptosis by a Bak-dependent intrinsic pathway[J]. Mol Cancer Ther, 2010, 9:2497-2510.
[45] Hamacher-Brady A, Stein HA, Turschner S, et al. Artesunate activates mitochondrial apoptosis in breast cancer cells via iron-catalyzed lysosomal reactive oxygen species production[J]. J Biol Chem, 2011, 286:6587-6601.
[46] Wei Y, Sinha S, Levine B. Dual role of JNK1-mediated phosphorylation of Bcl-2 in autophagy and apoptosis regulation[J]. Autophagy, 2008, 4:949-951.
[47] Li X, Ba Q, Liu Y, et al. Dihydroartemisinin selectively inhibits PDGFRα-positive ovarian cancer growth and metastasis through inducing degradation of PDGFRα protein[J]. Cell Discov, 2017, 3:17042.
[48] Li Y, Zhou X, Liu J, et al. Dihydroartemisinin inhibits the tumorigenesis and metastasis of breast cancer via downregulating CIZ1 expression associated with TGF-β1 signaling[J]. Life Sci, 2020, 248:117454.
[49] Zhong G, Liang R, Yao J, et al. Artemisinin ameliorates osteoarthritis by inhibiting the Wnt/β-catenin signaling pathway[J]. Cell Physiol Biochem, 2018, 51:2575-2590.
[50] Wong YK, Xu C, Kalesh KA, et al. Artemisinin as an anticancer drug:recent advances in target profiling and mechanisms of action[J]. Med Res Rev, 2017, 37:1492-1517.
[51] Zhou Y, Li W, Xiao Y. Profiling of multiple targets of artemisinin activated by hemin in cancer cell proteome[J]. ACS Chem Biol, 2016, 11:882-888.
[52] Jolliffe DM. A history of the use of arsenicals in man[J]. J R Soc Med, 1993, 86:287-289.
[53] Ma J. The application of arsenic trioxide in the treatment of leukemia[J]. China Prescr Drug (中国处方药), 2004, 10:17-20.
[54] Lu KP. Prolyl isomerase Pin1 as a molecular target for cancer diagnostics and therapeutics[J]. Cancer Cell, 2003, 4:175-180.
[55] Kozono S, Lin YM, Seo HS, et al. Arsenic targets Pin1 and cooperates with retinoic acid to inhibit cancer-driving pathways and tumor-initiating cells[J]. Nat Commun, 2018, 9:3069.
[56] Rustighi A, Zannini A, Tiberi L, et al. Prolyl-isomerase Pin1 controls normal and cancer stem cells of the breast[J]. EMBO Mol Med, 2014, 6:99-119.
[57] O'Brien DI, Nally K, Kelly RG, et al. Targeting the Fas/Fas ligand pathway in cancer[J]. Expert Opin Ther Targets, 2005, 9:1031-1044.
[58] Wang JY, Zhao XQ, Wang CM, et al. Arsenic trioxide enhances TRAIL inducing human lung cancer cell line A549 cells apoptosis by down-regulate the expression of NF-kappaB[J]. J Sichuan Univ (Med Sci Edi) (四川大学学报(医学版)), 2012, 43:834-838.
[59] Zhou L, Jiang L, Xu M, et al. Miltirone exhibits antileukemic activity by ROS-mediated endoplasmic reticulum stress and mitochondrial dysfunction pathways[J]. Sci Rep, 2016, 6:20585.
[60] Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis[J]. Nature, 2011, 473:298-307.
[61] Yang MH, Zang YS, Huang H, et al. Arsenic trioxide exerts anti-lung cancer activity by inhibiting angiogenesis[J]. Curr Cancer Drug Targets, 2014, 14:557-566.
[62] Zhou CY, Gong LY, Liao R, et al. Evaluation of the target genes of arsenic trioxide in pancreatic cancer by bioinformatics analysis[J]. Oncol Lett, 2019, 18:5163-5172.
[63] Li YB, Lv C, Zhang WD. Application of methods on target identification and validation of label-free natural products[J]. Acta Pharm Sin (药学学报), 2019, 54:98-104.
1.张旭, 蒙凌华.源于天然产物或其衍生物的分子靶向抗肿瘤药物研究进展[J]. 药学学报, 2020,55(11): 2491-2500
2.彭英, 李萍萍, 李琳, 张喻, 侯伟贞, 崔丹丹, 李江, 王玲, 王庆利, 王晓良.抗阿尔茨海默病药物临床研究进展[J]. 药学学报, 2016,51(8): 1185-1195
3.王艳艳, 张晓进, 杨英睿, 孙昊鹏, 尤启冬.类天然藤黄属桥环呫吨酮的结构优化研究进展[J]. 药学学报, 2014,49(3): 293-302
4.吴文, 卢骋, 陈思宇, 余聂芳.已上市和部分正在Ⅲ期临床开发中的多靶点激酶抑制剂抑酶谱及信号传导通路分析[J]. 药学学报, 2009,44(3): 242-257
5.张建业;符立梧.几类重要的海洋抗肿瘤药物研究进展[J]. 药学学报, 2008,43(5): 435-442