药学学报, 2021, 56(2): 414-431
引用本文:
龙春庭, 邵敏, 陆小云. 激酶小分子抑制剂研究进展[J]. 药学学报, 2021, 56(2): 414-431.
LONG Chun-ting, SHAO Min, LU Xiao-yun. Research progress on small molecule kinase inhibitors[J]. Acta Pharmaceutica Sinica, 2021, 56(2): 414-431.

激酶小分子抑制剂研究进展
龙春庭, 邵敏, 陆小云
暨南大学药学院, 广东 广州 510632
摘要:
蛋白激酶与肿瘤、炎症、自身免疫病、神经性疾病等众多疾病的发病机制密切相关,近30年以来激酶作为一个非常有潜力的药物靶点受到了广泛研究。截止2020年4月,FDA批准了59个激酶小分子抑制剂上市,再次激发了针对癌症和其他疾病治疗领域的靶向药物的兴起。本文重点分析了59个已获批上市的药物以及处于Ⅱ期和Ⅲ期临床试验的121个(能检索到分子结构的)激酶小分子抑制剂,按照靶点和适应证等信息进行了汇总和分类分析。此外,本文还简单列举了几类热门靶点及其抑制剂的研究概况。
关键词:    蛋白激酶      小分子抑制剂      抗肿瘤      批准上市     
Research progress on small molecule kinase inhibitors
LONG Chun-ting, SHAO Min, LU Xiao-yun
College of Pharmacy, Jinan University, Guangzhou 510632, China
Abstract:
Protein kinases are intimately involved in the pathogenesis of many diseases such as cancer, inflammation, and autoimmune and neurological diseases. Therefore, kinases have been widely studied as drug targets over the past three decades. As of April, 2020, the FDA had approved 59 small molecule kinase inhibitors (SMKIs) in the emerging field of targeted drug therapy. This paper focuses on the biochemistry and pharmacology of these 59 SMKIs and 121 SMKIs for which structures can be retrieved and that are now in phase Ⅱ and Ⅲ clinical trials. In addition, this paper also conducts a simple analysis of several popular targets and their inhibitors.
Key words:    protein kinase    small molecule kinase inhibitor    anticancer    approved   
收稿日期: 2020-06-20
DOI: 10.16438/j.0513-4870.2020-1027
基金项目: 国家自然科学基金资助项目(81922062,81874285).
通讯作者: 陆小云,E-mail:luxy2016@jnu.edu.cn
Email: luxy2016@jnu.edu.cn
相关功能
PDF(1753KB) Free
打印本文
0
作者相关文章
龙春庭  在本刊中的所有文章
邵敏  在本刊中的所有文章
陆小云  在本刊中的所有文章

参考文献:
[1] Roskoski R. Properties of FDA-approved small molecule protein kinase inhibitors:a 2020 update[J]. Pharmacol Res, 2020, 152:104609.
[2] Ficarro SB, McCleland ML, Stukenberg PT, et al. Phosphoproteome analysis by mass spectrometry and its application to saccharomyces cerevisiae[J]. Nat Biotechnol, 2002, 20:301-305.
[3] Cohen P. The regulation of protein function by multisite phosphorylation-a 25 year update[J]. Trends Biochem Sci, 2000, 25:596-601.
[4] Manning G, Whyte DB, Martinez R, et al. The protein kinase complement of the human genome[J]. Science, 2002, 298:1912-1916, 1933-1934.
[5] Duong-Ly KC, Peterson JR. The human kinome and kinase inhibition[J]. Curr Protoc Pharmacol, 2013. DOI:10.1002/0471141755.ph0209s60.
[6] Knighton DR, Zheng J, Ten Eyck LF, et al. Crystal structure of the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase[J]. Science, 1991, 253:407-414.
[7] Liao JJL. Molecular recognition of protein kinase binding pockets for design of potent and selective kinase inhibitors[J]. J Med Chem, 2007, 50:409-424.
[8] Taylor SS, Kornev AP. Protein kinases:evolution of dynamic regulatory proteins[J]. Trends Biochem Sci, 2011, 36:65-77.
[9] Kornev AP, Taylor SS. Dynamics-driven allostery in protein kinases[J]. Trends Biochem Sci, 2015, 40:628-647.
[10] Kang CM, Dai YJ, Wang QY, et al. Small-molecule inhibitors of protein tyrosine kinases and their mechanisms of action[J]. Chin J New Drugs (中国新药杂志), 2013, 22:1170-1178.
[11] van Linden OPJ, Kooistra AJ, Leurs R, et al. KLIFS:a knowledge-based structural database to navigate kinase-ligand interaction space[J]. J Med Chem, 2014, 57:249-277.
[12] Cohen MS, Zhang C, Shokat KM, et al. Structural bioinformatics-based design of selective, irreversible kinase inhibitors[J]. Science, 2005, 308:1318-1321.
[13] Zhang XX, Sun LQ, Qi J. Research progress of small-molecule tyrosine kinase inhibitors as antitumor agents[J]. Chin J New Drugs (中国新药杂志), 2018, 27:2616-2629.
[14] Roskoski R. Classification of small molecule protein kinase inhibitors based upon the structures of their drug-enzyme complexes[J]. Pharmacol Res, 2016, 103:26-48.
[15] Lu X, Smaill JB, Ding K. New promise and opportunities for allosteric kinase inhibitors[J]. Angew Chem Int Ed, 2020. DOI:10.1002/anie.201914525.
[16] Lamba V, Ghosh I. New directions in targeting protein kinases:focusing upon true allosteric and bivalent inhibitors[J]. Curr Pharm Des, 2012, 18:2936-2945.
[17] Choura M, Rebai A. Receptor tyrosine kinases:from biology to pathology[J]. J Recept Sig Transduct Res, 2011, 31:387-394.
[18] Hojjat-Farsangi M. Targeting non-receptor tyrosine kinases using small molecule inhibitors:an overview of recent advances[J]. J Drug Targeting, 2016, 24:192-211.
[19] Li Y, Tian C, Wang L, et al. Research progress of small-molecule epidermal growth factor receptor-tyrosine kinase inhibitors[J]. Anti-tumor Pharm (肿瘤药学), 2016, 6:81-88.
[20] Lee P, Anderson D, Bouhana K, et al. In vivo activity of ARRY-380, a potent, small molecule inhibitor of ErbB2 in combination with trastuzumab, docetaxel or bevacizumab[J]. Cancer Res, 2009, 69:5104.
[21] Smaill JB, Gonzales AJ, Spicer JA, et al. Tyrosine kinase inhibitors. 20. Optimization of substituted quinazoline and pyrido[3,4-d]pyrimidine derivatives as orally active, irreversible inhibitors of the epidermal growth factor receptor family[J]. J Med Chem, 2016, 59:8103-8124.
[22] Zhang S, Anjum R, Squillace R, et al. The potent ALK inhibitor brigatinib (AP26113) overcomes mechanisms of resistance to firstand second-generation ALK inhibitors in preclinical models[J]. Clin Cancer Res, 2016, 22:5527-5538.
[23] Rabindran SK, Discafani CM, Rosfjord EC, et al. Antitumor activity of HKI-272, an orally active, irreversible inhibitor of the HER-2 tyrosine kinase[J]. Cancer Res, 2004, 64:3958-3965.
[24] Ward RA, Anderton MJ, Ashton S, et al. Structureand reactivity-based development of covalent inhibitors of the activating and gatekeeper mutant forms of the epidermal growth factor receptor (EGFR)[J]. J Med Chem, 2013, 56:7025-7048.
[25] Li D, Ambrogio L, Shimamura T, et al. BIBW2992, an irreversible EGFR/HER2 inhibitor highly effective in preclinical lung cancer models[J]. Oncogene, 2008, 27:4702-4711.
[26] Wedge SR, Ogilvie DJ, Dukes M, et al. ZD6474 inhibits vascular endothelial growth factor signaling, angiogenesis, and tumor growth following oral administration[J]. Cancer Res, 2002, 62:4645-4655.
[27] Rusnak DW, Lackey K, Affleck K, et al. The effects of the novel, reversible epidermal growth factor receptor/ErbB-2 tyrosine kinase inhibitor, GW2016, on the growth of human normal and tumor-derived cell lines in vitro and in vivo[J]. Mol Cancer Ther, 2001, 1:85-94.
[28] Lombardo LJ, Lee FY, Chen P, et al. Discovery of N-(2-chloro-6-methyl-phenyl)-2-(6-(4-(2-hydroxyethyl)-piperazin-1-yl)-2-methylpyrimidin-4-ylamino)thiazole-5-carboxamide (BMS-354825), a dual Src/Abl kinase inhibitor with potent antitumor activity in preclinical assays[J]. J Med Chem, 2004, 47:6658-6661.
[29] Moyer JD, Barbacci EG, Iwata KK, et al. Induction of apoptosis and cell cycle arrest by CP-358,774, an inhibitor of epidermal growth factor receptor tyrosine kinase[J]. Cancer Res, 1997, 57:4838-4848.
[30] Barker AJ, Gibson KH, Grundy W, et al. Studies leading to the identification of ZD1839(iressa):an orally active, selective epidermal growth factor receptor tyrosine kinase inhibitor targeted to the treatment of cancer[J]. Bioorg Med Chem Lett, 2001, 11:1911-1914.
[31] Yrden Y. The EGFR family and its ligands in human cancer signalling mechanisms and therapeutic opportunities[J]. Eur J Cancer, 2001, 37:3-8.
[32] Turner N, Grose R. Fibroblast growth factor signalling:from development to cancer[J]. Nat Rev Cancer, 2010, 10:116-129.
[33] Krause DS, Van Etten RA. Tyrosine kinase as targets for cancer therapy[J]. N Eng1 J Med, 2005, 353:172-187.
[34] Beenken A, Mohammadi M. The Fgf family:biology, pathophysiology and therapy[J]. Nat Rev Drug Discov, 2009, 8:235-253.
[35] Olsen SK, Ibrahimi OA, Raucci A, et al. Insights into the molecular basis for fibroblast growth factor receptor autoinhibition and ligang-binding proniscuity[J]. Proc Natl Acad Sci U S A, 2004, 101:935-940.
[36] Johnson DE, Willians LT. Structural and functional diversity in the Fgf receptor multigene family[J]. Adv Cancer Res, 1993, 60:1-41.
[37] Omitz DM, Xu J, Colvin JS, et al. Receptor specificity of the fibroblast growth factor family[J]. J Biol Chem, 1996, 271:15292-15297.
[38] Dai S, Zhou Z, Chen Z, et al. Fibroblast growth factor receptors (FGFRs):structures and small molecule inhibitors[J]. Cells, 2019, 8:614.
[39] Perera TPS, Jovcheva E, Mevellec L, et al. Discovery and pharmacological characterization of JNJ-42756493(erdafitinib), a functionally selective small-molecule fgfr family inhibitor[J]. Mol Cancer Ther, 2017, 16:1010-1020.
[40] Yamamoto Y, Matsui J, Matsushima T, et al. Lenvatinib, an angiogenesis inhibitor targeting VEGFR/FGFR, shows broad antitumor activity in human tumor xenograft models associated with microvessel density and pericyte coverage[J]. Vasc Cell, 2014, 6:18.
[41] Roth GJ, Heckel A, Colbatzky F, et al. Design, synthesis, and evaluation of indolinones as triple angiokinase inhibitors and the discovery of a highly specific 6-methoxycarbonyl-substituted indolinone (BIBF 1120)[J]. J Med Chem, 2009, 52:4466-4480.
[42] Wilhelm SM, Dumas J, Adnane L, et al. Regorafenib (BAY 73-4506):a new oral multikinase inhibitor of angiogenic, stromal and oncogenic receptor tyrosine kinases with potent preclinical antitumor activity[J]. Int J Cancer, 2011, 129:245-255.
[43] Gozgit JM, Wong MJ, Moran L, et al. Ponatinib (AP24534), a multitargeted pan-FGFR inhibitor with activity in multiple FGFR-amplified or mutated cancer models[J]. Mol Cancer Ther, 2012, 11:690-699.
[44] Harris PA, Boloor A, Cheung M, et al. Discovery of 5-[[4-[(2,3-dimethyl-2H-indazol-6-yl)methylamino]-2-pyrimidinyl]amino]-2-methyl-benzenesulfonamide (pazopanib), a novel and potent vascular endothelial growth factor receptor inhibitor[J]. J Med Chem, 2008, 51:4632-4640.
[45] Tocchetti CG, Gallucci G, Coppola C, et al. The emerging issue of cardiac dysfunction induced by antineoplastic angiogenesis inhibitors[J]. Eur J Heart Failure, 2013, 15:482-489.
[46] Di LD, Novo G, Madonna R, et al. Anticancer therapy-induced vascular toxicity:VEGF inhibition and beyond[J]. Int J Cardiol, 2017, 227:11-17.
[47] Furet P, Manley PW. Prospects for antiangiogenic therapies based upon VEGF inhibition[J]. ACS Symp Ser, 2001, 796:282-298.
[48] Rapisarda A, Melillo G. Role of the VEGF/VEGFR axis in cancer biology and therapy[J]. Adv Cancer Res, 2012, 114:237-267.
[49] Fabbro D, Ruetz S, Bodis S, et al. PKC412-a protein kinase inhibitor with a broad therapeutic potential[J]. Anticancer Drug Des, 2000, 15:17-28.
[50] Hu-Lowe DD, Zou HY, Grazzini ML, et al. Nonclinical antiangiogenesis and antitumor activities of axitinib (AG-013736), an oral, potent, and selective inhibitor of vascular endothelial growth factor receptor tyrosine kinases 1, 2, 3[J]. Clin Cancer Res, 2008, 14:7272-7283.
[51] Yakes FM, Chen J, Tan J, et al. Cabozantinib (XL184), a novel MET and VEGFR2 inhibitor, simultaneously suppresses metastasis, angiogenesis, and tumor growth[J]. Mol Cancer Ther, 2011, 10:2298-2308.
[52] O'Hare T, Shakespeare WC, Zhu X, et al. AP24534, a pan-BCR-ABL inhibitor for chronic myeloid leukemia, potently inhibits the T315I mutant and overcomes mutation-based resistance[J]. Cancer Cell, 2009, 16:401-412.
[53] Sun L, Liang C, Shirazian S, et al. Discovery of 5-[5-fluoro-2-oxo-1,2-dihydroindol-(3Z)-ylidenemethyl]-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (2-diethylaminoethyl)amide, a novel tyrosine kinase inhibitor targeting vascular endothelial and platelet-derived growth factor receptor tyrosine kinase[J]. J Med Chem, 2003, 46:1116-1119.
[54] Wilhelm SM, Carter C, Tang L, et al. BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis[J]. Cancer Res, 2004, 64:7099-7109.
[55] Smith CIE, Baskin B, Humire-Greiff P, et al. Expression of Bruton's agammaglobulinemia tyrosine kinase gene, BTK, is selectively down-regulated in T lymphocytes and plasma cells[J]. J Immunol, 1994, 152:557-565.
[56] Davis RE, Ngo VN, Lenz G, et al. Chronic active B-cell-receptor signaling in diffuse large B-cell lymphoma[J]. Nature, 2010, 61:88-92.
[57] Kawakami Y, Kitaura J, Hata D, et al. Functions of Bruton's tyrosine kinase in mast and B cells[J]. J Leukocyte Biol, 1999, 65:286-290.
[58] Deng R, Zhao LZ. Research progress on Btk inhibitors[J]. J Pharm Res (药学研究), 2014, 33:359-361, 372.
[59] Guo Y, Liu Y, Hu N, et al. Discovery of zanubrutinib (BGB-3111), a novel, potent, and selective covalent inhibitor of Bruton's tyrosine kinase[J]. J Med Chem, 2019, 62:7923-7940.
[60] Byrd JC, Harrington B, O'Brien S, et al. Acalabrutinib (ACP-196) in relapsed chronic lymphocytic leukemia[J]. N Engl J Med, 2016, 374:323-332.
[61] Honigberg LA, Smith AM, Sirisawad M, et al. The Bruton tyrosine kinase inhibitor PCI-32765 blocks B-cell activation and is efficacious in models of autoimmune disease and B-cell malignancy[J]. Proc Natl Acad Sci U S A, 2010, 107:13075-13080.
[62] Kiu H, Nicholson SE. Biology and significance of the JAK/STAT signalling pathways[J]. Growth Factors, 2012, 30:88-106.
[63] Xie WH, Zhang ZL. Current situation and prospect of Janus tyrosine kinase inhibitors in the treatment of rheumatoid arthritis[J]. Chin J Rheumatol (中华风湿病学杂志), 2019, 23:482-486.
[64] Ji QQ, Guo WW, Zhang QQ, et al. Research progress of JAK inhibitors in the treatment of rheumatoid arthritis[J]. China Pharm (中国药房), 2016, 27:711-713.
[65] Wernig G, Kharas MG, Okabe R, et al. Efficacy of TG101348, a selective JAK2 inhibitor, in treatment of a murine model of JAK2V617F-induced polycythemia vera[J]. Cancer Cell, 2008, 13:311-320.
[66] Nakayamada S, Kubo S, Iwata S, et al. Recent progress in JAK inhibitors for the treatment of rheumatoid arthritis[J]. BioDrugs, 2016, 30:407-419.
[67] Fridman JS, Scherle PA, Collins R, et al. Selective inhibition of JAK1 and JAK2 is efficacious in rodent models of arthritis:preclinical characterization of INCB028050[J]. J Immunol, 2010, 184:5298-5307.
[68] Jiang Jk, Ghoreschi K, Deflorian F, et al. Examining the chirality, conformation and selective kinase inhibition of 3-((3R,4R)-4-methyl-3-(methyl(7H-pyrrolo[2,3-d]pyrimidin-4-yl)amino)piperidin-1-yl)-3-oxopropanenitrile (CP-690,550)[J]. J Med Chem, 2008, 51:8012-8018.
[69] Quintas-Cardama A, Vaddi K, Liu P, et al. Preclinical characterization of the selective JAK1/2 inhibitor INCB018424:therapeutic implications for the treatment of myeloproliferative neoplasms[J]. Blood, 2010, 115:3109-3117.
[70] Liu P, Cheng H, Roberts TM, et al. Targeting the phosphoinositide 3-kinase pathway in cancer[J]. Nat Rev Drug Discov, 2009, 8:627-644.
[71] Cai TT, Zhao M, Wang JP. Advances in antitumor studies of PI3K inhibitors[J]. Zhejiang J Integr Tradit Chin West Med (浙江中西医结合杂志), 2018, 28:709-714.
[72] Furet P, Guagnano V, Fairhurst RA, et al. Discovery of NVP-BYL719 a potent and selective phosphatidylinositol-3 kinase alpha inhibitor selected for clinical evaluation[J]. Bioorg Med Chem Lett, 2013, 23:3741-3748.
[73] Liu N, Rowley BR, Bull CO, et al. BAY 80-6946 is a highly selective intravenous PI3K inhibitor with potent p110α and p110δ activities in tumor cell lines and xenograft models[J]. Mol Cancer Ther, 2013, 12:2319-2330.
[74] Lannutti BJ, Meadows SA, Herman SEM, et al. CAL-101, a p110δ selective phosphatidylinositol-3-kinase inhibitor for the treatment of B-cell malignancies, inhibits PI3K signaling and cellular viability[J]. Blood, 2011, 117:591-594.
[75] Malumbres M, Barbacid M. Cell cycle, CDKs and cancer:a changing paradigm[J]. Nat Rev Cancer, 2009, 9:153-166.
[76] Lim S, Kaldis P. CDKs cyclins and CKIs:roles beyond cell regulation[J]. Developement, 2013, 140:3079-3093.
[77] Hamilton E, Infante JR. Targeting CDK4/6 in patient with cancer[J]. Cancer Treatment Rev, 2016, 45:129-138.
[78] Fu B, Mo CM, Qin YC, et al. Progress of CDK4/6 inhibitors in treatment of malignant tumors[J]. J Hainan Med Univ (海南医学院学报), 2019, 25:1676-1680.
[79] Van Arsdale T, Boshoff C, Arndt KT, et al. Molecular pathways:targeting the cyclin D-CDK4/6 axis for cancer treatment[J]. Clin Cancer Res, 2015, 21:2905-2910.
[80] Gelbert LM, Cai S, Lin X, et al. Preclinical characterization of the CDK4/6 inhibitor LY2835219:in-vivo cell cycle-dependent/independent anti-tumor activities alone/in combination with gemcitabine[J]. Invest New Drugs, 2014, 32:825-837.
[81] Fry DW, Harvey PJ, Keller PR, et al. Specific inhibition of cyclin-dependent kinase 4/6 by PD 0332991 and associated antitumor activity in human tumor xenografts[J]. Mol Cancer Ther, 2004, 3:1427-1438.
[82] Yao YF, Wang J, Wang BC, et al. Advances in primary resistance mechanism of tyrosine kinase inhibitors in non-small cell lung cancer[J]. Chin J Oncol (中华肿瘤杂志), 2016, 38:801-805.
[83] Liu QH, Li ZH, Li DB. Progress on acquired drug-resistance mechanism of EGFR-TKIs and its relation with microRNAs in patients with non-small cell lung cancer[J]. Pract J Cardiac Cerebr Pneu Vasc Dis (实用心脑肺血管病杂志), 2019, 27:9-14, 19.
[84] He QY. Tumor heterogeneity and drug resistance of targeted antitumor agents[J]. Acta Pharm Sin (药学学报), 2016, 51:197-201.
相关文献:
1.周晓菲, 李睿, 姚红娟, 李亮.ACK1小分子抑制剂的研究进展[J]. 药学学报, 2020,55(5): 821-831
2.姜玉环, 张晶, 陈云雨, 王艳宏, 司书毅.以PLK1 PBD为靶点小分子抑制剂的筛选及抗肿瘤活性研究[J]. 药学学报, 2017,52(3): 409-415
3.黎晓龙, 邱瑞, 李珏, 海俐, 吴勇.小分子抗肿瘤FGFR抑制剂与FGFR蛋白的作用关系研究及研发进展[J]. 药学学报, 2016,51(11): 1689-1697
4.王瑞虹;张鸿卿;方敏;薛绍白.蛋白激酶抑制剂staurosporine增强抗癌药对肿瘤细胞的杀伤[J]. 药学学报, 1996,31(6): 411-415
5.彭;俊苏怀德.有机锡化合物抗肿瘤生物活性研究[J]. 药学学报, 1994,29(6): 406-411