药学学报, 2021, 56(2): 432-444
引用本文:
宋晓翰, 王江, 柳红. 先导化合物结构优化策略(八)——药物转运体及其相关药物设计策略[J]. 药学学报, 2021, 56(2): 432-444.
SONG Xiao-han, WANG Jiang, LIU Hong. Lead compound optimization strategy (8) drug transporters and related drug design strategies[J]. Acta Pharmaceutica Sinica, 2021, 56(2): 432-444.

先导化合物结构优化策略(八)——药物转运体及其相关药物设计策略
宋晓翰1,2, 王江1,2, 柳红1,2
1. 中国科学院上海药物研究所, 新药研究国家重点实验室, 上海 201203;
2. 中国科学院大学, 北京 100049
摘要:
转运体会对药物在人体中的转移和分布产生极大的影响。一方面可溶性载体转运体可以将药物转运进入组织器官,从而提升药物生物利用度以及改变药物的组织分布;另一方面,细胞上的ATP结合盒转运体会将某些药物排出细胞,从而降低细胞内药物浓度,产生耐药性。本文总结了人体中几种重要的药物转运体的底物特征以及针对药物转运体进行药物设计的策略,包括前药修饰提高生物利用度、引入酸性基团改善肝脏选择性、改善化合物极性降低外排比等。
关键词:    转运体      药物设计      先导化合物     
Lead compound optimization strategy (8) drug transporters and related drug design strategies
SONG Xiao-han1,2, WANG Jiang1,2, LIU Hong1,2
1. State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China
Abstract:
Transporters have a great influence on the transportation and distribution of drugs in the body. On the one hand, solute carrier transporters could transport drugs into tissues and organs, which may improve the oral bioavailability or change the tissue-distribution of the drugs. On the other hand, the ATP-binding cassette could pump some drugs out of the cell, which decreases the intracellular drug concentrations and leads to drug resistance. This paper summarizes the distribution, substrate characteristics and drug design strategies of several important drug transporters, such as improving bioavailability by prodrug design, introducing acid group to improve hepatic selectivity and adjusting the polarity of compounds to decrease efflux ratio.
Key words:    transporter    drug design    lead compound   
收稿日期: 2020-07-27
DOI: 10.16438/j.0513-4870.2020-1248
基金项目: 国家自然科学基金资助项目(21632008).
通讯作者: 柳红,Tel:86-21-50807042,E-mail:hliu@simm.ac.cn
Email: hliu@simm.ac.cn
相关功能
PDF(1517KB) Free
打印本文
0
作者相关文章
宋晓翰  在本刊中的所有文章
王江  在本刊中的所有文章
柳红  在本刊中的所有文章

参考文献:
[1] Li W, Zhang H, Assaraf YG, et al. Overcoming ABC transporter-mediated multidrug resistance:molecular mechanisms and novel therapeutic drug strategies[J]. Drug Resist Updat, 2016, 27:14-29.
[2] Mohammad IS, He W, Yin L. Understanding of human ATP binding cassette superfamily and novel multidrug resistance modulators to overcome MDR[J]. Biomed Pharmacother, 2018, 100:335-348.
[3] Anderson CM, Thwaites DT. Hijacking solute carriers for proton-coupled drug transport[J]. Physiology (Bethesda), 2010, 25:364-377.
[4] Ford RC, Beis K. Learning the ABCs one at a time:structure and mechanism of ABC transporters[J]. Biochem Soc Trans, 2019, 47:23-36.
[5] Lewinson O, Livnat-Levanon N. Mechanism of action of ABC importers:conservation, divergence, and physiological adaptations[J]. J Mol Biol, 2017, 429:606-619.
[6] Muller J, Keiser M, Drozdzik M, et al. Expression, regulation and function of intestinal drug transporters:an update[J]. Biol Chem, 2017, 398:175-192.
[7] Ivanyuk A, Livio F, Biollaz J, et al. Renal drug transporters and drug interactions[J]. Clin Pharmacokinet, 2017, 56:825-892.
[8] Pan G. Roles of hepatic drug transporters in drug disposition and liver toxicity[J]. Adv Exp Med Biol, 2019, 1141:293-340.
[9] Morris ME, Rodriguez-Cruz V, Felmlee MA. SLC and ABC transporters:expression, localization, and species differences at the blood-brain and the blood-cerebrospinal fluid barriers[J]. AAPS J, 2017, 19:1317-1331.
[10] Hong Y, Zhou Y, Wang J, et al. Lead compound optimization strategy (4)——improving blood-brain barrier permeability through structural modification[J]. Acta Pharm Sin (药学学报), 2014, 49:789-799.
[11] Hillgren KM, Keppler D, Zur AA, et al. Emerging transporters of clinical importance:an update from the International Transporter Consortium[J]. Clin Pharmacol Ther, 2013, 94:52-63.
[12] International Transporter Consortium. Membrane transporters in drug development[J]. Nat Rev Drug Discov, 2010, 9:215-236.
[13] Miller DS. Regulation of ABC transporters at the blood-brain barrier[J]. Clin Pharmacol Ther, 2015, 97:395-403.
[14] Fuchino K, Mitsuoka Y, Masui M, et al. Rational design of novel 1,3-oxazine based beta-secretase (BACE1) inhibitors:incorporation of a double bond to reduce P-gp efflux leading to robust a beta reduction in the brain[J]. J Med Chem, 2018, 61:5122-5137.
[15] Yoshikawa M, Saitoh M, Katoh T, et al. Discovery of 7-oxo-2,4,5,7-tetrahydro-6H-pyrazolo[3,4-c]pyridine derivatives as potent, orally available, and brain-penetrating receptor interacting protein 1(RIP1) kinase inhibitors:analysis of structure-kinetic relationships[J]. J Med Chem, 2018, 61:2384-2409.
[16] Brandsch M. Transport of drugs by proton-coupled peptide transporters:pearls and pitfalls[J]. Expert Opin Drug Metab Toxicol, 2009, 5:887-905.
[17] Rubio-Aliaga I, Daniel H. Mammalian peptide transporters as targets for drug delivery[J]. Trends Pharmacol Sci, 2002, 23:434-440.
[18] Terada T, Inui K. Peptide transporters:structure, function, regulation and application for drug delivery[J]. Curr Drug Metab, 2004, 5:85-94.
[19] Brandsch M, Knutter I, Bosse-Doenecke E. Pharmaceutical and pharmacological importance of peptide transporters[J]. J Pharm Pharmacol, 2008, 60:543-585.
[20] Brandsch M, Thunecke F, Kullertz G, et al. Evidence for the absolute conformational specificity of the intestinal H+/peptide symporter, PEPT1[J]. J Biol Chem, 1998, 273:3861-3864.
[21] Terada T, Saito H, Inui K. Interaction of beta-lactam antibiotics with histidine residue of rat H+/peptide cotransporters, PEPT1 and PEPT2[J]. J Biol Chem, 1998, 273:5582-5585.
[22] Zhao D, Lu K. Substrates of the human oligopeptide transporter hPEPT2[J]. Biosci Trends, 2015, 9:207-213.
[23] Rubio-Aliaga I, Daniel H. Peptide transporters and their roles in physiological processes and drug disposition[J]. Xenobiotica, 2008, 38:1022-1042.
[24] Doring F, Will J, Amasheh S, et al. Minimal molecular determinants of substrates for recognition by the intestinal peptide transporter[J]. J Biol Chem, 1998, 273:23211-23218.
[25] Tamai I, Nakanishi T, Hayashi K, et al. The predominant contribution of oligopeptide transporter PepT1 to intestinal absorption of beta-lactam antibiotics in the rat small intestine[J]. J Pharm Pharmacol, 1997, 49:796-801.
[26] Subbaiah MAM, Meanwell NA, Kadow JF. Design strategies in the prodrugs of HIV-1 protease inhibitors to improve the pharmaceutical properties[J]. Eur J Med Chem, 2017, 139:865-883.
[27] Vig BS, Huttunen KM, Laine K, et al. Amino acids as promoieties in prodrug design and development[J]. Adv Drug Deliv Rev, 2013, 65:1370-1385.
[28] Sun J, Dahan A, Amidon GL. Enhancing the intestinal absorption of molecules containing the polar guanidino functionality:a double-targeted prodrug approach[J]. J Med Chem, 2010, 53:624-632.
[29] Ganapathy ME, Huang W, Wang H, et al. Valacycloviv:a substrate for the intestinal and renal peptide transporters PEPT1 and PEPT2[J]. Biochem Biophys Res Commun, 1998, 246:470-475.
[30] Varma MVS, Eriksson AH, Sawada G, et al. Transepithelial transport of the group II metabotropic glutamate 2/3 receptor agonist (1S,2S,5R,6S)-2-aminobicyclo[3.1.0] hexane-2,6-dicarboxylate (LY354740) and its prodrug (1S,2S,5R,6S)-2[(2'S)-(2'-amino)propionyl]aminobicyclo[3.1.0] hexane-2,6-dicarboxylate (LY544344)[J]. Drug Metab Dispos, 2009, 37:211-220.
[31] Rorick-Kehn LM, Perkins EJ, Knitowski KM, et al. Improved bioavailability of the mGlu2/3 receptor agonist LY354740 using a prodrug strategy:in vivo pharmacology of LY544344[J]. J Pharmacol Exp Ther, 2006, 316:905-913.
[32] Jiang Q, Zhang J, Tong P, et al. Bioactivatable pseudotripeptidization of cyclic dipeptides to increase the affinity toward oligopeptide transporter 1 for enhanced oral absorption:an application to cyclo(l-Hyp-l-Ser) (JBP485)[J]. J Med Chem, 2019, 62:7708-7721.
[33] Li TT, An JX, Xu JY, et al. Overview of organic anion transporters and organic anion transporter polypeptides and their roles in the liver[J]. World J Clin Cases, 2019, 7:3915-3933.
[34] Otani N, Ouchi M, Hayashi K, et al. Roles of organic anion transporters (OATs) in renal proximal tubules and their localization[J]. Anat Sci Int, 2017, 92:200-206.
[35] Feng Y, Wang C, Liu Q, et al. Bezafibrate-mizoribine interaction:involvement of organic anion transporters OAT1 and OAT3 in rats[J]. Eur J Pharm Sci, 2016, 81:119-128.
[36] Morimoto S, Fujioka Y, Tsutsumi C, et al. Mizoribine-induced rhabdomyolysis in a rheumatoid arthritis patient receiving bezafibrate treatment[J]. Am J Med Sci, 2005, 329:211-213.
[37] Cameron KO, Kung DW, Kalgutkar AS, et al. Discovery and preclinical characterization of 6-chloro-5-[4-(1-hydroxycyclobutyl)phenyl]-1H-indole-3-carboxylic acid (PF-06409577), a direct activator of adenosine monophosphate-activated protein kinase (AMPK), for the potential treatment of diabetic nephropathy[J]. J Med Chem, 2016, 59:8068-8081.
[38] Edmonds DJ, Kung DW, Kalgutkar AS, et al. Optimization of metabolic and renal clearance in a series of indole acid direct activators of 5'-adenosine monophosphate-activated protein kinase (AMPK)[J]. J Med Chem, 2018, 61:2372-2383.
[39] Bebernitz GR, Beaulieu V, Dale BA, et al. Investigation of functionally liver selective glucokinase activators for the treatment of type 2 diabetes[J]. J Med Chem, 2009, 52:6142-6152.
[40] Pfefferkorn JA, Guzman-Perez A, Litchfield J, et al. Discovery of (S)-6-(3-cyclopentyl-2-(4-(trifluoromethyl)-1H-imidazol-1-yl)propanamido)nicotinic acid as a hepatoselective glucokinase activator clinical candidate for treating type 2 diabetes mellitus[J]. J Med Chem, 2012, 55:1318-1333.
[41] Oballa RM, Belair L, Black WC, et al. Development of a liver-targeted stearoyl-CoA desaturase (SCD) inhibitor (MK-8245) to establish a therapeutic window for the treatment of diabetes and dyslipidemia[J]. J Med Chem, 2011, 54:5082-5096.
[42] Feng D, Biftu T, Romero FA, et al. Discovery of MK-8722:a systemic, direct pan-activator of AMP-activated protein kinase[J]. ACS Med Chem Lett, 2018, 9:39-44.
[43] Koepsell H. Multiple binding sites in organic cation transporters require sophisticated procedures to identify interactions of novel drugs[J]. Biol Chem, 2019, 400:195-207.
[44] Koepsell H, Lips K, Volk C. Polyspecific organic cation transporters:structure, function, physiological roles, and biopharmaceutical implications[J]. Pharm Res, 2007, 24:1227-1251.
[45] Hendrickx R, Johansson JG, Lohmann C, et al. Identification of novel substrates and structure-activity relationship of cellular uptake mediated by human organic cation transporters 1 and 2[J]. J Med Chem, 2013, 56:7232-7242.
[46] Kimura N, Okuda M, Inui K. Metformin transport by renal basolateral organic cation transporter hOCT2[J]. Pharm Res, 2005, 22:255-259.
[47] Jung N, Lehmann C, Rubbert A, et al. Relevance of the organic cation transporters 1 and 2 for antiretroviral drug therapy in human immunodeficiency virus infection[J]. Drug Metab Dispos, 2008, 36:1616-1623.
[48] Burger H, Zoumaro-Djayoon A, Boersma AW, et al. Differential transport of platinum compounds by the human organic cation transporter hOCT2(hSLC22A2)[J]. Br J Pharmacol, 2010, 159:898-908.
[49] Didziapetris R, Japertas P, Avdeef A, et al. Classification analysis of P-glycoprotein substrate specificity[J]. J Drug Target, 2003, 11:391-406.
[50] Hitchcock SA. Structural modifications that alter the P-glycoprotein efflux properties of compounds[J]. J Med Chem, 2012, 55:4877-4895.
[51] Mealey KL. Therapeutic implications of the MDR-1 gene[J]. J Vet Pharmacol Ther, 2004, 27:257-264.
[52] Alvarez M, Paull K, Monks A, et al. Generation of a drug resistance profile by quantitation of mdr-1/P-glycoprotein in the cell lines of the National Cancer Institute Anticancer Drug Screen[J]. J Clin Invest, 1995, 95:2205-2214.
[53] Stefan SM, Wiese M. Small-molecule inhibitors of multidrug resistance-associated protein 1 and related processes:a historic approach and recent advances[J]. Med Res Rev, 2019, 39:176-264.
[54] Fernandes J, Gattass CR. Topological polar surface area defines substrate transport by multidrug resistance associated protein 1(MRP1/ABCC1)[J]. J Med Chem, 2009, 52:1214-1218.
[55] Cole SP. Targeting multidrug resistance protein 1(MRP1, ABCC1):past, present, and future[J]. Annu Rev Pharmacol Toxicol, 2014, 54:95-117.
[56] Lu JF, Pokharel D, Bebawy M. MRP1 and its role in anticancer drug resistance[J]. Drug Metab Rev, 2015, 47:406-419.
[57] Rosenbaum C, Rohrs S, Muller O, et al. Modulation of MRP-1-mediated multidrug resistance by indomethacin analogues[J]. J Med Chem, 2005, 48:1179-1187.
[58] Nakano R, Oka M, Nakamura T, et al. A leukotriene receptor antagonist, ONO-1078, modulates drug sensitivity and leukotriene C4 efflux in lung cancer cells expressing multidrug resistance protein[J]. Biochem Biophys Res Commun, 1998, 251:307-312.
[59] Barrand MA, Rhodes T, Center MS, et al. Chemosensitisation and drug accumulation effects of cyclosporin A, PSC-833 and verapamil in human MDR large cell lung cancer cells expressing a 190k membrane protein distinct from P-glycoprotein[J]. Eur J Cancer, 1993, 29A:408-415.
[60] Wong IL, Chan KF, Tsang KH, et al. Modulation of multidrug resistance protein 1(MRP1/ABCC1)-mediated multidrug resistance by bivalent apigenin homodimers and their derivatives[J]. J Med Chem, 2009, 52:5311-5322.
[61] Pellicani RZ, Stefanachi A, Niso M, et al. Potent galloyl-based selective modulators targeting multidrug resistance associated protein 1 and P-glycoprotein[J]. J Med Chem, 2011, 55:424-436.
[62] Silbermann K, Stefan SM, Elshawadfy R, et al. Identification of thienopyrimidine scaffold as an inhibitor of the ABC transport protein ABCC1(MRP1) and related transporters using a combined virtual screening approach[J]. J Med Chem, 2019, 62:4383-4400.
[63] Ni Z, Bikadi Z, Rosenberg MF, et al. Structure and function of the human breast cancer resistance protein (BCRP/ABCG2)[J]. Curr Drug Metab, 2010, 11:603-617.
[64] Lee CA, O'Connor MA, Ritchie TK, et al. Breast cancer resistance protein (ABCG2) in clinical pharmacokinetics and drug interactions:practical recommendations for clinical victim and perpetrator drug-drug interaction study design[J]. Drug Metab Dispos, 2015, 43:490-509.
[65] Hira D, Terada T. BCRP/ABCG2 and high-alert medications:Biochemical, pharmacokinetic, pharmacogenetic, and clinical implications[J]. Biochem Pharmacol, 2018, 147:201-210.
[66] Keskitalo JE, Zolk O, Fromm MF, et al. ABCG2 polymorphism markedly affects the pharmacokinetics of atorvastatin and rosuvastatin[J]. Clin Pharmacol Ther, 2009, 86:197-203.
[67] Westover D, Li F. New trends for overcoming ABCG2/BCRP-mediated resistance to cancer therapies[J]. J Exp Clin Cancer Res, 2015, 34:159.
[68] Allen JD, van Loevezijn A, Lakhai JM, et al. Potent and specific inhibition of the breast cancer resistance protein multidrug transporter in vitro and in mouse intestine by a novel analogue of fumitremorgin C[J]. Mol Cancer Ther, 2002, 1:417-425.
[69] Krapf MK, Gallus J, Vahdati S, et al. New inhibitors of breast cancer resistance protein (ABCG2) containing a 2,4-disubstituted pyridopyrimidine scaffold[J]. J Med Chem, 2018, 61:3389-3408.
[70] Pick A, Klinkhammer W, Wiese M. Specific inhibitors of the breast cancer resistance protein (BCRP)[J]. ChemMedChem, 2010, 5:1498-1505.
[71] Kohler SC, Wiese M. HM30181 derivatives as novel potent and selective inhibitors of the breast cancer resistance protein (BCRP/ABCG2)[J]. J Med Chem, 2015, 58:3910-3921.
[72] Li D, Sheng L, Li Y. Methods for the study of drug transporters[J]. Acta Pharm Sin (药学学报), 2014, 49:963-970.
相关文献:
1.彭晶晶, 王江, 戴文豪, 谢雄, 柳红.先导化合物结构优化策略(七)——肽类分子结构修饰与改造[J]. 药学学报, 2020,55(3): 427-445
2.曾凡奇 彭士明 李 礼 穆丽冰 张振华 张志远 黄 牛.基于组蛋白乙酰化转移酶p300结构的小分子抑制剂设计[J]. 药学学报, 2013,48(5): 700-708
3.王尔华;周文培.芳环上96种常用取代基的Q型聚类分析法[J]. 药学学报, 1983,18(9): 665-672