药学学报, 2021, 56(2): 465-475
引用本文:
杨雨琦, 巩飞, 柏上, 程亮. 肿瘤微环境响应型纳米诊疗制剂的研究进展[J]. 药学学报, 2021, 56(2): 465-475.
YANG Yu-qi, GONG Fei, BAI Shang, CHENG Liang. Progress in tumor microenvironment responsive nano-platforms for cancer theranostics[J]. Acta Pharmaceutica Sinica, 2021, 56(2): 465-475.

肿瘤微环境响应型纳米诊疗制剂的研究进展
杨雨琦, 巩飞, 柏上, 程亮
苏州大学功能纳米与软物质研究院, 苏州纳米科技协同创新中心, 江苏 苏州 215123
摘要:
肿瘤在生长与恶化的过程中,伴随着具有乏氧、低pH值、氧化应激增加、高浓度谷胱甘肽(glutathione,GSH)及过表达的酶等一系列异常特征的微环境。这些因素虽然影响或限制了肿瘤的治疗,但同时为针对癌症的诊断与新型治疗策略提供了可能的途径。近年来,根据肿瘤微环境(tumor microenvironment,TME)特性,不同响应型的纳米制剂不断地被开发并初步应用于癌症诊疗中。本文首先简要介绍TME的典型特征;其次,详细总结相应乏氧响应型、pH响应型、氧化还原响应型、酶响应型、双重及多重响应型纳米制剂的设计原理和研究进展;最后,对TME响应型纳米制剂存在的挑战与未来发展趋势进行一定的展望。
关键词:    肿瘤微环境      刺激响应      纳米医学      递药系统      诊断     
Progress in tumor microenvironment responsive nano-platforms for cancer theranostics
YANG Yu-qi, GONG Fei, BAI Shang, CHENG Liang
Institute of Functional Nano and Soft Materials and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
Abstract:
During growth and progression, the microenvironment of tumors suffers a series of abnormal characteristics, which include hypoxia, acid pH, increased oxidative stress, excess glutathione (GSH), as well as certain overexpressed enzymes. Although affect or limit the cancer therapeutic outcomes, these factors provide possible approaches to strategies for cancer detection and novel therapy at the same time. Recently, based on these properties of the tumor microenvironment (TME), various kinds of responsive nano-platforms have been continuously developed and applied in cancer theranostics preliminarily. Thus, this review would introduce the typical features of TME firstly, then detailly summarize the design principles and research progress of corresponding hypoxia-responsive, pH-responsive, redox-responsive, enzyme-responsive, dual-responsive and multi-responsive nano-platforms. Finally, the challenges and the perspectives of the TME-responsive nano-platforms are briefly discussed.
Key words:    tumor microenvironment    stimuli-responsive    nanomedicine    drug delivery system    diagnosis   
收稿日期: 2020-07-22
DOI: 10.16438/j.0513-4870.2020-1223
基金项目: 国家自然科学基金资助项目(51302180);国家973计划项目(2016YFA0201200).
通讯作者: 程亮,Tel/Fax:86-512-65880927,E-mail:lcheng2@suda.edu.cn
Email: lcheng2@suda.edu.cn
相关功能
PDF(1364KB) Free
打印本文
0
作者相关文章
杨雨琦  在本刊中的所有文章
巩飞  在本刊中的所有文章
柏上  在本刊中的所有文章
程亮  在本刊中的所有文章

参考文献:
[1] Gong F, Yang NL, Wang XW, et al. Tumor microenvironment-responsive intelligent nanoplatforms for cancer theranostics[J]. Nano Today, 2020, 32:100851.
[2] Liu JJ, Chen Q, Feng LZ, et al. Nanomedicine for tumor microenvironment modulation and cancer treatment enhancement[J]. Nano Today, 2018, 21:55-73.
[3] Shi JJ, Kantoff PW, Wooster R, et al. Cancer nanomedicine:progress, challenges and opportunities[J]. Nat Rev Cancer, 2017, 17:20-37.
[4] Hou B, Wang DG, Gao J, et al. Advances of microenvironment-activated nanosized drug delivery system for cancer immunotherapy[J]. Acta Pharm Sin (药学学报), 2019, 54:1802-1809.
[5] Wang DD, Liu R, Wang Y, et al. In vitro targeting efficiency evaluation of reduction-responsive co-loaded doxorubicin/siRNA nanoparticles[J]. Acta Pharm Sin (药学学报), 2018, 53:2104-2112.
[6] Li C, Xia JS, Wei XB, et al. pH-Activated near-infrared fluorescence nanoprobe imaging tumors by sensing the acidic microenvironment[J]. Adv Funct Mater, 2010, 20:2222-2230.
[7] Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis[J]. Nat Med, 2013, 19:1423-1437.
[8] Najafi M, Goradel NH, Farhood B, et al. Tumor microenvironment:interactions and therapy[J]. J Cell Physiol, 2019, 234:5700-5721.
[9] Xiang W, Shi RC, Kang X, et al. Monoacylglycerol lipase regulates cannabinoid receptor 2-dependent macrophage activation and cancer progression[J]. Nat Commun, 2018, 9:2574.
[10] Casazza A, Di Conza G, Wenes M, et al. Tumor stroma:a complexity dictated by the hypoxic tumor microenvironment[J]. Oncogene, 2014, 33:1743-1754.
[11] Harris AL. Hypoxia-a key regulatory factor in tumour growth[J]. Nat Rev Cancer, 2002, 2:38-47.
[12] Vaupel P, Harrison L. Tumor hypoxia:causative factors, compensatory mechanisms, and cellular response[J]. Oncologist, 2004, 9(suppl 5):4-9.
[13] Brown JM, Wilson WR. Exploiting tumour hypoxia in cancer treatment[J]. Nat Rev Cancer, 2004, 4:437-447.
[14] Warburg O, Wind F, Negelein E. The metabolism of tumors in the body[J]. J Gen Physiol, 1927, 8:519-530.
[15] Wojtkowiak JW, Verduzco D, Schramm KJ, et al. Drug resistance and cellular adaptation to tumor acidic pH microenvironment[J]. Mol Pharm, 2011, 8:2032-2038.
[16] Chen Q, Liu XD, Chen JW, et al. A self-assembled albumin-based nanoprobe for in vivo ratiometric photoacoustic pH imaging[J]. Adv Mater, 2015, 27:6820-6827.
[17] Gupta SC, Hevia D, Patchva S, et al. Upsides and downsides of reactive oxygen species for cancer:the roles of reactive oxygen species in tumorigenesis, prevention, and therapy[J]. Antioxid Redox Signal, 2012, 16:1295-1322.
[18] Pelicano H, Carney D, Huang P. ROS stress in cancer cells and therapeutic implications[J]. Drug Resist Updat, 2004, 7:97-110.
[19] Liu J, Liang JJ, Wu CL, et al. A doubly-quenched fluorescent probe for low-background detection of mitochondrial H2O2[J]. Anal Chem, 2019, 91:6902-6909.
[20] Meng FH, Hennink WE, Zhong ZY. Reduction-sensitive polymers and bioconjugates for biomedical applications[J]. Biomaterials, 2009, 30:2180-2198.
[21] Qiao YT, Wan JQ, Zhou LQ, et al. Stimuli-responsive nanotherapeutics for precision drug delivery and cancer therapy[J]. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 2019, 11:e1527.
[22] Wang HH, Fu ZG, Li W, et al. The synthesis and application of nano doxorubicin-indocyanine green matrix metalloproteinase-responsive hydrogel in chemophototherapy for head and neck squamous cell carcinoma[J]. Int J Nanomedicine, 2019, 14:623-638.
[23] Gondi CS, Rao JS. Cathepsin B as a cancer target[J]. Expert Opin Ther Targets, 2013, 17:281-291.
[24] Dong XH, Yin WY, Zhang X, et al. Intelligent MoS2 nanotheranostic for targeted and enzyme-/pH-/NIR-responsive drug delivery to overcome cancer chemotherapy resistance guided by PET imaging[J]. ACS Appl Mater Interfaces, 2018, 10:4271-4284.
[25] Guo SW, Xiao XY, Wang XM, et al. Reductive microenvironment responsive gadolinium-based polymers as potential safe MRI contrast agents[J]. Biomater Sci, 2019, 7:1919-1932.
[26] Huang J, Wu YL, Zeng F, et al. An activatable near-infrared chromophore for multispectral optoacoustic imaging of tumor hypoxia and for tumor inhibition[J]. Theranostics, 2019, 9:7313-7324.
[27] Liu JN, Bu WB, Shi JL. Chemical design and synthesis of functionalized probes for imaging and treating tumor hypoxia[J]. Chem Rev, 2017, 117:6160-6224.
[28] Komatsu H, Yoshihara K, Yamada H, et al. Ruthenium complexes with hydrophobic ligands that are key factors for the optical imaging of physiological hypoxia[J]. Chemistry, 2013, 19:1971-1977.
[29] Yu Q, Huang TC, Li YP, et al. Rational design of a luminescent nanoprobe for hypoxia imaging in vivo via ratiometric and photoluminescence lifetime imaging microscopy[J]. Chem Commun, 2017, 53:4144-4147.
[30] Zhang SJ, Hosaka M, Yoshihara T, et al. Phosphorescent light-emitting iridium complexes serve as a hypoxia-sensing probe for tumor imaging in living animals[J]. Cancer Res, 2010, 70:4490-4498.
[31] Knox HJ, Hedhli J, Kim TW, et al. A bioreducible N-oxide-based probe for photoacoustic imaging of hypoxia[J]. Nat Commun, 2017, 8:1794.
[32] Shin U, Kim J, Lee J, et al. Development of 64Cu-loaded perfluoropentane nanodroplet:a potential tumor theragnostic nano-carrier and dual-modality PET-ultrasound imaging agents[J]. Ultrasound Med Biol, 2020, 46:2775-2784.
[33] Yang GB, Phua SZF, Lim WQ, et al. A hypoxia-responsive albumin-based nanosystem for deep tumor penetration and excellent therapeutic efficacy[J]. Adv Mater, 2019, 31:e1901513.
[34] Wang YZ, Xie Y, Li J, et al. Tumor-penetrating nanoparticles for enhanced anticancer activity of combined photodynamic and hypoxia-activated therapy[J]. ACS Nano, 2017, 11:2227-2238.
[35] Thambi T, Deepagan VG, Yoon HY, et al. Hypoxia-responsive polymeric nanoparticles for tumor-targeted drug delivery[J]. Biomaterials, 2014, 35:1735-1743.
[36] Sreeja S, Krishnan Nair CK. Tumor control by hypoxia-specific chemotargeting of iron-oxide nanoparticle-Berberine complexes in a mouse model[J]. Life Sci, 2018, 195:71-80.
[37] Gurav DD, Kulkarni AS, Khan A, et al. pH-Responsive targeted and controlled doxorubicin delivery using hyaluronic acid nanocarriers[J]. Colloids Surf B Biointerfaces, 2016, 143:352-358.
[38] Liang YP, Zhao X, Ma PX, et al. pH-Responsive injectable hydrogels with mucosal adhesiveness based on chitosan-grafted-dihydrocaffeic acid and oxidized pullulan for localized drug delivery[J]. J Colloid Interface Sci, 2019, 536:224-234.
[39] Huang X, Yuan YP, Ruan WW, et al. pH-Responsive theranostic nanocomposites as synergistically enhancing positive and negative magnetic resonance imaging contrast agents[J]. J Nanobiotechnol, 2018, 16:30.
[40] Dong ZL, Feng LZ, Zhu WW, et al. CaCO3 nanoparticles as an ultra-sensitive tumor-pH-responsive nanoplatform enabling real-time drug release monitoring and cancer combination therapy[J]. Biomaterials, 2016, 110:60-70.
[41] Chen Q, Liang C, Sun XQ, et al. H2O2-responsive liposomal nanoprobe for photoacoustic inflammation imaging and tumor theranostics via in vivo chromogenic assay[J]. Proc Natl Acad Sci U S A, 2017, 114:5343-5348.
[42] Zhang R, Song XJ, Liang C, et al. Catalase-loaded cisplatin-prodrug-constructed liposomes to overcome tumor hypoxia for enhanced chemo-radiotherapy of cancer[J]. Biomaterials, 2017, 138:13-21.
[43] Dong ZL, Feng LZ, Chao Y, et al. Amplification of tumor oxidative stresses with liposomal fenton catalyst and glutathione inhibitor for enhanced cancer chemotherapy and radiotherapy[J]. Nano Lett, 2019, 19:805-815.
[44] Ranji-Burachaloo H, Gurr PA, Dunstan DE, et al. Cancer treatment through nanoparticle-facilitated fenton reaction[J]. ACS Nano, 2018, 12:11819-11837.
[45] Sang YJ, Cao FF, Li W, et al. Bioinspired construction of a nanozyme-based H2O2 homeostasis disruptor for intensive chemodynamic therapy[J]. J Am Chem Soc, 2020, 142:5177-5183.
[46] Baldwin AD, Kiick KL. Reversible maleimide-thiol adducts yield glutathione-sensitive poly(ethylene glycol)-heparin hydrogels[J]. Polym Chem, 2013, 4:133-143.
[47] Guo RY, Huang F, Zhang B, et al. GSH activated biotin-tagged near-infrared probe for efficient cancer imaging[J]. Theranostics, 2019, 9:3515-3525.
[48] Wang ZL, Xue XD, Lu HW, et al. Two-way magnetic resonance tuning and enhanced subtraction imaging for non-invasive and quantitative biological imaging[J]. Nat Nanotechnol, 2020, 15:482-490.
[49] Zhai SD, Hu XL, Hu YJ, et al. Visible light-induced crosslinking and physiological stabilization of diselenide-rich nanoparticles for redox-responsive drug release and combination chemotherapy[J]. Biomaterials, 2017, 121:41-54.
[50] Wang SF, Li FY, Qiao RR, et al. Arginine-rich manganese silicate nanobubbles as a ferroptosis-inducing agent for tumor-targeted theranostics[J]. ACS Nano, 2018, 12:12380-12392.
[51] Hu QY, Katti PS, Gu Z. Enzyme-responsive nanomaterials for controlled drug delivery[J]. Nanoscale, 2014, 6:12273-12286.
[52] Cai B, Rao L, Ji XH, et al. Autofluorescent gelatin nanoparticles as imaging probes to monitor matrix metalloproteinase metabolism of cancer cells[J]. J Biomed Mater Res A, 2016, 104:2854-2860.
[53] Sun L, Xie SP, Ji XR, et al. MMP-2-responsive fluorescent nanoprobes for enhanced selectivity of tumor cell uptake and imaging[J]. Biomater Sci, 2018, 6:2619-2626.
[54] Yao Q, Kou LF, Tu Y, et al. MMP-responsive ‘smart’ drug delivery and tumor targeting[J]. Trends Pharmacol Sci, 2018, 39:766-781.
[55] Ke WD, Zha ZS, Mukerabigwi JF, et al. Matrix metalloproteinase-responsive multifunctional peptide-linked amphiphilic block copolymers for intelligent systemic anticancer drug delivery[J]. Bioconjug Chem, 2017, 28:2190-2198.
[56] Chen WH, Luo GF, Lei Q, et al. Overcoming the heat endurance of tumor cells by interfering with the anaerobic glycolysis metabolism for improved photothermal therapy[J]. ACS Nano, 2017, 11:1419-1431.
[57] Peng N, Ding X, Wang ZY, et al. Novel dual responsive alginate-based magnetic nanogels for onco-theranostics[J]. Carbohydr Polym, 2019, 204:32-41.
[58] Lang TQ, Dong XY, Zheng Z, et al. Tumor microenvironment-responsive docetaxel-loaded micelle combats metastatic breast cancer[J]. Sci Bull, 2019, 64:91-100.
[59] Han HJ, Hou Y, Chen XH, et al. Metformin-induced stromal depletion to enhance the penetration of gemcitabine-loaded magnetic nanoparticles for pancreatic cancer targeted therapy[J]. J Am Chem Soc, 2020, 142:4944-4954.
[60] Lin LS, Song JB, Song L, et al. Simultaneous fenton-like ion delivery and glutathione depletion by MnO2-based nanoagent to enhance chemodynamic therapy[J]. Angew Chem Int Ed Engl, 2018, 57:4902-4906.
[61] Yao C, Wang WX, Wang PY, et al. Near-infrared upconversion mesoporous cerium oxide hollow biophotocatalyst for concurrent pH-/H2O2-responsive O2-evolving synergetic cancer therapy[J]. Adv Mater, 2018, 30:1704833.
[62] Fu CP, Duan XH, Cao MH, et al. Targeted magnetic resonance imaging and modulation of hypoxia with multifunctional hyaluronic acid-MnO2 nanoparticles in glioma[J]. Adv Healthc Mater, 2019, 8:e1900047.
[63] Liu JJ, Chen Q, Zhu WW, et al. Nanoscale-coordination-polymer-shelled manganese dioxide composite nanoparticles:a multistage redox/pH/H2O2-responsive cancer theranostic nanoplatform[J]. Adv Funct Mater, 2017, 27:1605926.
[64] Qi AH, Deng L, Liu X, et al. Gelatin-encapsulated magnetic nanoparticles for pH, redox, and enzyme multiple stimuli-responsive drug delivery and magnetic resonance imaging[J]. J Biomed Nanotechnol, 2017, 13:1386-1397.
相关文献:
1.胡川, 高会乐.肿瘤微环境响应性与调节性递药系统研究进展[J]. 药学学报, 2020,55(7): 1520-1527
2.候博, 王当歌, 高晶, 王晖, 李亚平, 于海军.微环境激活型纳米递药系统用于肿瘤免疫治疗的研究进展[J]. 药学学报, 2019,54(10): 1802-1809
3.高会乐, 蒋新国.肿瘤靶向递药新策略的研究进展[J]. 药学学报, 2016,51(2): 272-280